摘要
在对数导数意义下,万有Teichmuller空间T1可表示为无穷多个互不相交的连通分支的并集.本文研究了该模型各分支的几何性质,给出了为e-iθ/(1-e-iθz)为L和Lθ的公共边界点,且在‖·‖1的意义下,证明了L,L0,Lθ两两公共边界点之间的距离均为2.
The model of the universal Teichmuller space T1 by the derivative of logarithm is the union of infinitely many disconnected components. In this paper, the geometric property of the boundary of T1 is investigated and it is obtained that e^-iθ/(1-e-iθz) ∈ L∩ Lθ . In addition, by ‖·‖1 it is proved that the distance between the boundary of T1 is 2.
出处
《纯粹数学与应用数学》
CSCD
2010年第5期792-797,共6页
Pure and Applied Mathematics
基金
国家自然科学基金(10871211)
西华师范大学科研基金(08B032)