期刊文献+

高阶非线性差分方程的全局吸引性 被引量:2

Global attractivity of a higher order nonlinear difference equation
下载PDF
导出
摘要 研究了一类高阶非线性差分方程所有正解的周期性,不变区间及全局吸引性.证明了方程的正平衡点是在一个依赖于参数的盆里的全局吸引子. In this paper, we investigate the periodic character, invariant intervals and the global attractivity of all positive solutions of a higher order nonlinear difference equation. We show that the positive equilibrium of the equation is a global attractor with a basin that depends on certain conditions posed on the coefficients.
作者 唐国梅
出处 《纯粹数学与应用数学》 CSCD 2010年第5期816-821,共6页 Pure and Applied Mathematics
关键词 差分方程 不变区间 素二周期解 全局吸引子 difference equation, invariant intervals, period-two solutions, global attractor
  • 相关文献

参考文献15

  • 1Li W T,Sun H R.Dynamics of a rational difference equation[J].Appl.Math.Comput.,2005,163:577-591.
  • 2deVault R,Kosmala W,Ladas G,et al.Global behavior of yn+1=(p+yn-k)/(qyn+yn-k)[J].Nonlin.Anal.TMA,2001,47:4743-4751.
  • 3Kuruklis S A.The asymptotic stability of xn+1-zxn+bxn-k=0[J].J.Math.Anal.Appl.,1994,188:719-731.
  • 4Kocic V L,Ladas G.Global Behavior of Nonlinear Difference Equations of Higher Order with Applications[M].Dordrecht:Kluwer Academic,1993.
  • 5Cunningham K C,Kulenovic M R S,Ladas G,et al.On the recursive sequence xn+1=(a+βxn)/(Bxn+Cxn-1)[J].Nonlinear Anal.TMA,2001,47:4603-4614.
  • 6Agarwal R P,Li W T,Pang P Y H.Asymptotic behavior of a class of nonlinear delay difference equations[J].J.Diff.Equat.Appl.,2002,8:719-728.
  • 7Dehghan M,Rastegar N.On the global behavior of a high-order rational difference equation[J].Comput.Phys.Commun.,2009,180:873-878.
  • 8Kosmala W,Kulenovic M R S,Ladas G,et al.On the rational sequence(p+yn-1)/(qyn+yn-1)[J].J.Math.Anal.Appl.,2000,251:571-586.
  • 9Kulenovic M R S,Ladas G,Prokup N R.A rational difference equation[J].Comput.Math.Appl.,2001,41:671-678.
  • 10Kulenovic M R S,Ladas G,Prokup N R.On the recursive sequence(axn+βxn-1)/(1+xn)[J].J.Diff.Equat.Appl.,2000,6:563-576.

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部