期刊文献+

保等价部分变换半群的变种半群上的正则元 被引量:10

The regular element for variant semigroup of partial transformation semigroup preserving an equivalence relation
下载PDF
导出
摘要 在现有的保等价部分变换半群的基础上,引入了一个新的运算,得出保等价部分变换半群的变种半群的概念,利用格林关系及幂等元的正则性,讨论了这类半群中元素的正则性。 On the basis of semigroups of partial transformations preserving an equivalence relation,we derive the nation of variant semigroups of partial transformation semigroup preserving an equivalence through Green's relations and the regularity of idempotent and discuss the regularity for an element of this semigroup and give the sufficient and necessary condition of an element of variant semigroups of partial transformation semigroup preserving an equivalence is regular.
出处 《纯粹数学与应用数学》 CSCD 2010年第5期822-827,共6页 Pure and Applied Mathematics
基金 山东省教育厅科技计划项目(J06P18)
关键词 变换半群 保等价部分变换半群的变种半群 正则元 transformation semigroups, the variant semigroups of partial transformation semigroup preserving an equivalence, regular element
  • 相关文献

参考文献10

  • 1Pei Huisheng.Green's relations for the variants of transformation semigroups preserving an equivalence relation[J].Communications in Algebra,2007,35:1971-1986.
  • 2裴惠生,周会娟.保持一个等价关系的部分变换半群(英文)[J].数学进展,2009,38(1):103-116. 被引量:12
  • 3Pei Huisheng.Regularity and Green's relations for semigroups of transformations that preserve an equivalence[J].Communications in Algebra,2005,33:109-108.
  • 4孙垒,裴惠生,程正兴.一类变换半群的正则元和Green关系[J].Journal of Mathematical Research and Exposition,2007,27(3):591-600. 被引量:2
  • 5许新斋,孟玲.奇异保序变换半群的极大正则子半群[J].纯粹数学与应用数学,2009,25(3):508-511. 被引量:3
  • 6Magill Jr K D,Subbian S.Green's relations for regular elements of Sandwich semigroup,(Ⅰ)general results[J].London Math.Soc.,1975,3(31):194-210.
  • 7Magill Jr K D,Subbian S.Green's relations for regular elements of Sandwich semigroup,(Ⅱ)semigroups of continuous function[J].Austral.Math.Soc.,1978,25(A):45-65.
  • 8You T.Maximal regular subsemigroups of certain semigroups of transformations[J].Semigroup Forum,2002,64:391-396.
  • 9陈迪三.强P-正则半群上的最小正则*-半群同余[J].纯粹数学与应用数学,2009,25(1):142-144. 被引量:2
  • 10Howie J M.Fundamentals of Semigroup Theory[M].New York:Oxford University Press,1995.

二级参考文献34

  • 1范兴奎,陈倩华.P-析取强P-反演半群[J].纯粹数学与应用数学,2004,20(4):360-363. 被引量:1
  • 2黄学军.带逆断面的纯正半群的最小逆半群同余[J].四川师范大学学报(自然科学版),2005,28(3):296-298. 被引量:2
  • 3Howie, J.M., Fundamentals of Semigroup Theory, Oxford University Press, 1995.
  • 4Fountain, J., Adequate semigroups, Proc. Edinburgh Math. Soc., 1979, 22(2):, 113-125.
  • 5Fountain, J., Abundant semigroups, London Math. Soc., 1982, 44(3):, 103-129.
  • 6Umar, A., On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh, 1992, A120: 129-142.
  • 7Araujo, J. and Janusz Konieczny, Semigroups of transformations preserving an equivalence relation and a cross-section, Communications in Algebra, 2004, 32: 1917-1935.
  • 8Pei Huisheng, Equivalences, a-semigroups and a-congruences, Semigroup Forum, 1994, 49: 49-58.
  • 9Pei Huisheng, Regularity and Green's relations for semigroups of transformations that presereve an equivalence, Communications in Algebra, 2005, 33: 109-118.
  • 10Pei Huisheng, On the rank of the semigroup TE(Ⅹ), Semigroup Forum, 2005, 70: 107-117.

共引文献15

同被引文献40

  • 1杨浩波.保序部分变换半群上的同余[J].杭州师范学院学报(自然科学版),2007,6(3):161-163. 被引量:3
  • 2Magill K D Jr, Subiah S. Green's relations for regular elements of semigroups of endomorphisms[J]. Canad. J. Math., 1974,26:1484-1497.
  • 3Magill K D Jr. Green's equivalences and related concepts for semigroups of continuous selfmaps[J]. Ann. New York Acad. Sci., 1993,704:246-268.
  • 4Pei H S. Regularity and green's relations for semigroups of transformaftions that preserve an equivalence[J]. Communications in Algebra, 2005,33(1):109-118.
  • 5Pei H S, Zou D Y. Green's equivalences on semigroups of transformaftion preserving order and an equivalence relation[J]. Semigroup Forum, 2005,71(2):241-251.
  • 6Howie J M. Fundamentals of Semigroup Theory[M]. New york: Oxford University Press, 1995.
  • 7PEI Hui-shang. Regularity and Green' s relations for semigroups of transformations that preserving an equivalence [ J ]. Com- munications in Algebra, 2005,33 ( 1 ) : 108 - 109.
  • 8PEI Hui-sheng, SUN Lei, ZHAI Hong-cun. Green's relations for the variants of transformation Semigroups preserving an e- quivalence relation [ J ]. Communications in Algebra, 2007,35 (6) : 1971 - 1986.
  • 9HOWIE J M. Fundamentals of Semigroup Theory[ M]. New York: Oxford University Press, 1995.
  • 10HOWIE J M. Fundamentals of Semigroup Theory[ M ]. New York : Oxford University Press, 1995.

引证文献10

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部