期刊文献+

_0型箭图的一个表示的自同态代数的Cartan矩阵

The Cartan matrix of endomorphism algebra of a representation of quivers of type _0
下载PDF
导出
摘要 为了探讨代数的Cartan矩阵的某些性质与代数分类的关系,通过研究完全域k上的0型仿射箭图的一个有限维表示的自同态代数的结构与Jordan标准型的关系,并利用Jordan标准型的组合信息得到了该自同态代数的Cartan矩阵,验证了Cartan矩阵猜想在此情形下不成立.最后提出了一个有关仿射箭图性质的猜想. In order to study the relationship of some properties of Cartan matrices of various algebras with the classifications of the algebras, by investigating the structure of the endomorphism algebra of a finite dimensional representation of quivers of type A0 over a perfect field k and using the combinatorial information of the Jordan canonical form of matrices, the Cartan matrix of the algebra is obtained and the Cartan matrix conjecture is proved to be not true in this case. A conjecture of some properties of affine quivers is presented in the end.
作者 谢涛
出处 《纯粹数学与应用数学》 CSCD 2010年第5期844-849,共6页 Pure and Applied Mathematics
基金 湖北师范学院研究生启动项目(2007D56)
关键词 仿射箭图 CARTAN矩阵 自同态代数 affine quiver, Cartan matrix, endomorphism algebra
  • 相关文献

参考文献7

  • 1Cartan E.Les groupes bilindaires et les systèmes de nombres complexes[J].Ann.Fac.Sci.,1898,12(1):1-64.
  • 2Zacharia D.On the Cartan matrix of global dimension tow[J].J.Algebra,1983,82:353-357.
  • 3Burgess W D,Fuller K R,Voes E R,et al.The Cartan matrix as indicator of finite globle dimension for artin rings[J].Proce.American Math.Soc.,1985,95:157-165.
  • 4Burgess W D,Fuller K R.On quasihereditary rings[J].Proce.American Math.Soc.,1989,106:321-328.
  • 5张跃辉,郭金萍.线性序集Ringel对偶代数的Cartan矩阵[J].天津工程师范学院学报,2006,16(2):12-15. 被引量:1
  • 6Auslander M,Reiten I,SmaloSverre O.Representation Theory of Artin Algebras[M].Cambridge:Cambridge University Press,1997.
  • 7Charles W C,Irving R.Representation theory of finite groups and associative algebras[M].New York:Interscience Publishers,1962.

二级参考文献13

  • 1DYER M. Algebras associated to Bruhat intervals and polyhedral cones [ M ]. Finite dimensional algebras and topics,Kluwer, 1994.
  • 2DENG B M, XI C C. Quasi-hereditary algebras which are dual extensions of algebras [ J ]. Comm Alg Geom, 1994,22 :4 717-4 736.
  • 3DENG B M, XI C C. Quasi-hereditary algebras which are twisted double incidence algebras of posets [ J ]. Contri Alg Geom, 1995,36:37-71.
  • 4XI C C. Characteristic tilting modules and Ringel duals[ J].Science in China (Series A),2000,43:1 121-1 130.
  • 5BURGESS W D, FULLER K R. The Caftan determinant and generalizations of quasihereditary rings [ J ]. Proc Edinburgh Math Soc, 1998,41:23-32.
  • 6KOENLG S, Xi C C. When is a cellular algebra quasi-hereditary[ J]. Math Ann,1999,315:281-193.
  • 7XI C C, XIANG D J. Cellular algebras and Caftan matrices[ J ]. Linear Alg and Appl,2003,365 : 369-388.
  • 8PDNGEL C M. Tame algebras and quadratic forms [ M ].Lecture Notes Math, 1984.
  • 9DLAB V, RINGEL C M. The module theoretical approach to quasi-hereditary algebras[ J]. London Math Soc LN Ser,1992,168:200-224.
  • 10IRVING R S. BGG-algebras and the BGG reciprocity principle[ J]. Journal Alg, 1990,135:363-380.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部