摘要
研究奇异三阶m点边值问题:u(t)=f(t,u(t),u′(t),u″(t))+e(t),0<t<1,u(0)=u′(0)=0,u′(1)=∑m-2i=1αiu′(ξi),C1[0,1]解的存在性。这里函数f:[0,1]×R3→R满足Carath啨odory条件,t(1-t)e(t)∈L1(0,1),αi∈R,ξi∈(0,1),(i=1,2,…,m-2)且0<ξ1<ξ2<…<ξm-2<1是给定常数。主要结果的证明基于Leray-Schauder延拓定理。
The existence of a C1 solution of the m-point boundary value problem is studied u′″(t)=f(t,u(t),u′(t),u″(t))+e(t),t∈(0,1),u(0)=u′(0)=0,u′(1)=∑m-2i=1αiu′(ξi).Where f:×R3→R is a function satisfying Carathéodory's conditions and t(1-t)e(t)∈L1(0,1).Let αi∈R,ξi∈(0,1),(i=1,2,…,m-2) and 0〈ξ1〈ξ2〈…〈ξm-2〈1 be given.The proof of the main result is based on the Leray-Schauder continuation theorem.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2010年第10期93-97,103,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10671158)