期刊文献+

分数型几何平均亚式期权的保险精算定价 被引量:4

An Actuarial Approach to Geometric Average Asian Options in a Fractional Brownian Motion
下载PDF
导出
摘要 在Mogens Bladt和Tina Haviid Rydberg无市场完备假设的条件下,仅利用价格过程实际概率的期权保险精算定价模型基础,得出了标的资产价格服从几何分数布朗运动的几何平均亚式期权定价公式,最后通过计算说明了Hurst参数对几何平均亚式看涨、看跌期权价值的影响. Without any market assumptions,Mogens Bladt and Tina Haviid Rydberg use merely probability measure of price process and actuarial consideration for pricing options.Based on their work,this paper obtains Geometric Average Asian Options pricing formula when underlying assets are driven by Geometric Fractional Brownian Motion.then,we illuminate the effect of Hurst Parameter impact on Geometric Average Asian call or put Option to calculate the case.
作者 胡攀
出处 《重庆工商大学学报(自然科学版)》 2010年第5期435-439,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 分数布朗运动 亚式期权 随机微分方程 保险精算法 Fractional Brownian Motion Geometric Average Asian option stochastic differential equation actuarial approach
  • 相关文献

参考文献13

  • 1DUCAN T E, HU Y, PASIK-DUCAN B. Stochastic calculus for fractinal Brownian motion[ J]. SIAM J Control Optim, 2000,38 : 582-612.
  • 2HU Y, φKSENDAL B. factional white noise calculus and application to finance [ J ]. Inf Dim Anal Quantum Probab Rel Top, 2003 (6) :1-32.
  • 3CHOU C S, LIN H J. Asian options with jumps[ J]. Statistics & Probability , 2006,76 : 1983-1993.
  • 4WANG K, KIM II, QIAN X S. Convergence of the binomial tree method for Asian options in jump-diffusion models [ J ]. Mathematical analysis and applications, 2007,330:10-23.
  • 5WONG, CHEUNG . Geometric asian options: Valuation and calibration with stochastic volatility [J]. Quantitative Finance,2004 (4) :301-314.
  • 6BALLESTRA L V, PACELLI G, ZIRILLI F. A numerical method to price exotic path-dependent options on an underlying described by the Heston stochastic volatility model[J]. Journal of Banking & Finance,2007,31:3420-3437.
  • 7王莉君,张曙光.Vasiek利率模型下的亚式期权的定价问题和数值分析[J].应用数学学报,2003,26(3):467-474. 被引量:11
  • 8叶小青,蹇明,吴永红.亚式期权的保险精算定价[J].华中科技大学学报(自然科学版),2005,33(3):91-92. 被引量:4
  • 9章珂,周文彪,沈荣芳.几何平均亚式期权的定价方法[J].同济大学学报(自然科学版),2001,29(8):924-927. 被引量:31
  • 10BLADT M, RYDBERG H T. An actuarial approach to option pricing under the physical measure and without market assumptions [ J ]. Insurance : Mathematics and conomics, 1998,22 ( 1 ) : 65-73.

二级参考文献46

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 3格利茨L.金融工程学[M].北京:经济科学出版社,1998..
  • 4Kemna A G Z, Vorst A C F. A Pricing Method for Options Based on Average Asset Values. Journal of Banking and Finance, 1990, 14:113-129.
  • 5Carverhill A, Clewlow L. Flexible Convolution. RISK, 1990, 5:25-29.
  • 6Rogers L, Shi Z. The Value of an Asian Option. Journal of Applied Probability, 1995, 32:1077-1088.
  • 7Alziary B, Decamps J, Koehl P, A P D E Approach to Asian Option: Analytical and Numerical Evidence. Journal of Banking and Finance, 1997, 21:613--640.
  • 8Zvan R, Forsyth P, Vetzal K. Robust Numerical Methods for PDE Models of Asian Options. Journal of Computational Finance, 1997/98, 1(2): 39-78.
  • 9Geman H, Yor M. Bessel process, Asian Options and Perpetuities. Mathematical Finance, 1993, 3(4):349-375.
  • 10Geman, H, Eydeland, A Domino Effect. RISK, 1995, 8:65-67.

共引文献62

同被引文献28

  • 1DUCAN T E, HU Y, PASIK D B. Stochastic Calculus for Fractional Brownian Motion [ J ]. SIAM J Control Optim, 2000,38 : 582-612.
  • 2HU Y, KSENDA1 B. Fractional White Noise and Application to Finance [ J ]. Infinite Dimensional Analysis, Quantum Probability and Related Topics,2003(6) :1-32.
  • 3C IPRIAN N. Option Pricing in a Fractional Brownian Motion Environment[ J ]. Mathematical Reports, 2004,6 (3) :259-273.
  • 4MARGRABE M. The Value of an Option to Exchange One Asset for Another [ J ]. Journal of Finance, 1978,24 (3) :177-186.
  • 5BLADT M, RYDBERG T H. An Actuarial Approach to Option Pricing Under the Physical Measure and Without Market Assumptions [ J ]. Insurance : Mathematics and Economics, 1998,22 ( 1 ) :65-73.
  • 6邓英东,何启志,范允征.几何分数布朗运动交换期权的保险精算定价[J].统计与决策,2007,23(23):16-18. 被引量:8
  • 7姜礼尚.期权定价的数学模型和方法[M]北京:高等教育出版社,200374-89.
  • 8Ciprian Necula. Option pricing in a fractional Brownian motion environment[J].Academy of Economic Studies Bucharest,2004,(03):259-273.
  • 9崔立梅.欧式幂期权的保险精算法定价[J].湖南工程学院学报(自然科学版),2008,18(1):60-63. 被引量:4
  • 10刘海媛,周圣武,索新丽.标的资产价格服从分数布朗运动的几种新型期权定价[J].数学的实践与认识,2008,38(15):54-59. 被引量:13

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部