期刊文献+

基于相空间重构和支持向量机的和弦识别 被引量:2

Chord Recognition Based on Reconstructed Phase Space and SVM
下载PDF
导出
摘要 利用相空间重构方法提取和弦音频中非线性特征参量,将部分参量作为训练集来构造支持向量机(SVM)分类器,另一部分作为测试集进行识别效果的检验,仿真实验表明,基于相空间重构和支持向量机的方法能够有效地进行和弦的识别,可以进一步应用到连续的音乐识别当中。 This paper presents a method for chord recognition by utilizing nonlinear parameter based on reconstructed phase space technique.After extracting parameters from chord signals,SVM classifier are developed using part of the nonlinear parameters and the rest are used as test data to check out the recognition efficiency.The results demonstrate that the method based on Reconstructed phase Space and SVM could be used in chord recognition effectively.
作者 刘婷
出处 《计算机与数字工程》 2010年第10期139-142,共4页 Computer & Digital Engineering
关键词 和弦识别 相空间重构 支持向量机 chord recognition reconstructed phase space SVM
  • 相关文献

参考文献9

  • 1Povinelli, R.J., Johnson, M. T., Lindgren, A. C., et al. Statistical models of reconstructed phase spaces for signal classification[J]. IEEE Transactions on Signal Processing, 2006,54 : 2178-2186.
  • 2J. Ye, M. T. Johnson, R. J. Povinelli. Phoneme classification over the reconstructed phase space using principal component analysis[C]//Proc. ISCA Tutorial and Research Workshop on Non-Linear Speech Processing (NOLISP), Le Croisic, France, 2003 : 11- 16.
  • 3张文超,杨鼎才.语音信号相空间重构中时间延迟的选择方法[J].电子测量技术,2007,30(5):35-37. 被引量:3
  • 4姚洪兴,姜桂仁,耿霞.相空间重构中参数确定方法的新探讨[J].江苏大学学报(自然科学版),2005,26(B12):82-85. 被引量:5
  • 5A. Temko, C. Nadeu. Classification of Acoustic Events using SVM-based Clustering Schemes[J]. Pattern Recognition, Elsevier, 2006,39(4): 682-694.
  • 6W.M. Campbell, J. P. Campbell, D.A. Reynolds, et al. Support vector machines for speaker and language recogniton[J]. Comput. Speech Lang. , 2006,20 : 210- 229.
  • 7姚斯强,胡剑凌.线性判别分析和支持向量机的音乐分类方法[J].电声技术,2006,30(12):6-10. 被引量:4
  • 8颜景斌,伊戈尔.艾杜阿尔达维奇.基于连续小波和支持向量机分类音乐类型[J].计算机技术与发展,2008,18(12):19-21. 被引量:1
  • 9A. C. Lindgren, M. T. Johnson, R. J. Povinelli. Speech recognition using reconstructed phase space features[C]//Proc. Int. Conf. Acoustics, Speech, Signal Processing, 2003 : 61-63.

二级参考文献27

  • 1姚洪兴,吴越.多变量经济混沌时序的小波神经网络预测[J].江苏大学学报(自然科学版),2004,25(4):319-323. 被引量:4
  • 2Gilbson John F, Farmer Jdoyne, Casdagli Martin, et al.An analytic approach to practical state space reconstruction[J]. Physica, 1992, D57:1-30.
  • 3Theiler Jjames. Some comments on the correlation dimension of noise[J]. Phys Lett A, 1991,179:72.
  • 4Burred J, Lerch A. A Hierarchical approach to automatic musical genre classification[ C] // Int. Conf. on Digital Audio Effects (DAFx- 03). London, UK: [s. n. ], 2003:308 - 311.
  • 5Li T, Oginara M, Li Q. A comparative study on content- based music genre classification[C]//in Pine. of the 26th annual int. ACM SIGIR conf. on Research and development in information retrieval. [s. l. ] :ACM Press, 2003:282 -289.
  • 6Tzanetakis G, Cook P. Musical genre classification of audio signals[ J ]. IEEE Trans. on Speech and Audio Processing, 2002,10 (5) : 293 - 302.
  • 7Mallat S G. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation [ J ]. IEEE Trans Pattern Analysis and Machine Intdligence, 1989,11 (7) : 674 - 693.
  • 8Downie T R, Silverman B W. The discrete multiple wavdet transform and thresholding methods[J ]. IEEE Trans on Signal Processing, 1998,46(9) :2558 - 2561.
  • 9Platt J C. Fast training of SVMs using sequential minimal optimization[C]//Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1998.
  • 10WOLD E, BLUM T, KEISLAR D, et al. Content-based classification, search and retrieval of audio[J]. IEEE Multimedia Mag., 1996,3 (3) : 27-36.

共引文献8

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部