期刊文献+

基于LS-SVM的军用航空发电机寿命预测研究 被引量:3

Military aero-generator life prediction based on LS-SVM
下载PDF
导出
摘要 为解决航空发电机寿命有效预测的难题,以期实现视情维修,提升飞机的综合作战效能,提出一种基于LS-SVM(Least Squares Support Vector Machines)模型的航空发电机寿命预测方法。采用某型真实航空发电机,运用航空发电机专用寿命试验平台,对其进行加速寿命试验,获取输入转速、注油压力、负载、频率、电流、进油温度、出油温度、进口压力、出口压力等多种寿命相关参数,深入分析这些参数间的内在联系与寿命变化规律,设计LS-SVM寿命预测模型,并运用该寿命预测模型对航空发电机寿命表征参数进行预测。研究表明,所设计的LS-SVM寿命预测模型能较好实现对航空发电机的寿命预测效能,具有广阔的应用前景和较大的实际应用价值。 To solve aero generator life prediction problem in order to realize condition maintenance,to improve the overall combat effectiveness of aircraft,a new methods,based on LS-SVM(least squares support vector machines,LS-SVM) model for life prediction of aero generators is proposed in this paper.Using a certain type of real aero-generator,and special life test platform for aero-generator,the accelerated life testing was conducted.And the input speed,fuel injection pressure,load,frequency,current,inlet oil temperature,outlet oil temperature,inlet pressure,outlet pressure and other relevant parameters is obtained,by in-depth analysis of the intrinsic link between these parameters and changes of lifecycle was carried out.A life prediction model is designed by LS-SVM,and model parameters of aero-generator to predict the life characterization is used.The results show that the LS-SVM model can realize the aero-generator life prediction and is of a wide application prospect and great practical value.
出处 《沈阳航空工业学院学报》 2010年第4期63-66,共4页 Journal of Shenyang Institute of Aeronautical Engineering
基金 航空科学基金资助项目(项目编号:ID2008ZD54011) 辽宁省教育厅科研基金资助项目(项目编号:ID2008544)
关键词 LS-SVM 航空发电机 寿命预测 LS-SVM aero-generator life prediction
  • 相关文献

参考文献10

  • 1刘铭,黄纯洲,李勤.飞机机载机电系统多电技术的发展现状[J].航空科学技术,2005,16(6):10-13. 被引量:12
  • 2周增福,韩枫,严仰光.飞机电源系统发展趋势[A].航空电气工程第七届学术年会[C].中国,伊春,2007:1-11.
  • 3KANG Y W, LI J, CAO G Y,et al. Dynamic temperature modeling of an sofc using least squares support vector machines [ J ]. Journal of Power Sources, 2008,179:683 - 692.
  • 4谢军.航空电机学[M].北京:国防工业出版社,2004.
  • 5SENGUR A. Muhiclass least squares support vector machines for analog modulation classification [ J ]. Expert Systems with Applications,2009,36 (3) :69 - 73.
  • 6An S J, Liu W Q, Venkatesh S. Fast cross - validation algorithms for leastsquares support vector machine and kernel ridge regression [ J ]. Pattern Recognition, 2007,40 ( 8 ) : 2154 - 2162.
  • 7Yang Y, Chen S, Ye Z B. Combination of particle - swarm optimization with least - squares support vector machine for FDTD time series forecasting[ J ]. Microwave and Optical Technology Letters, 2006,48 ( 1 ) : 141 - 144.
  • 8Mitra V, Wang C J, Banerjee S. Text classification : a least square support vector machine approach [ J ]. Applied Soft Computing, 2007,7(3) :908 -914.
  • 9申为峰,李忠海.一种复杂环境下的前视机场跑道识别方法[J].沈阳航空工业学院学报,2009,26(3):74-77. 被引量:5
  • 10刘学平,李一波.关于人脸识别原型系统设计的研究[J].沈阳航空工业学院学报,2009,26(4):54-57. 被引量:9

二级参考文献19

共引文献23

同被引文献8

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部