摘要
在文献[1-2]的基础上,研究了非线性差分方程xn+1=a-bxpn-k/A-x2n的全局稳定性和正解的周期性,其中a,A为非负实数,b为正实数,k,p∈{1,2,…},p≥2.证明了该方程的一个正平衡点是一个全局吸引子,并给出了相应的吸引域.
On the basis of literature ,we study the global stability and the periodic character of the positive solution of the difference equations xn+1=a-bxn-k^p/A-xn^2,where a,A are nonnegative real number,b is positive real number and k,p∈{1,2,…},p≥2.We show that the positive equilibrium of the equations is a global attractor with a basin that depends on certain conditions posed on the coefficients by analysis method.
出处
《延边大学学报(自然科学版)》
CAS
2010年第3期213-220,共8页
Journal of Yanbian University(Natural Science Edition)
基金
国家自然科学基金资助项目(10661011)
关键词
差分方程
正平衡解
吸引性
difference equations
positive equilibrium
attractivity