期刊文献+

Properties of Quaternion Algebra over the Real Number Field and Z_p

Properties of Quaternion Algebra over the Real Number Field and Z_p
下载PDF
导出
摘要 The ring of quaternion over R,denoted by R[i,j,k],is a quaternion algebra. In this paper,the roots of quadratic equation with one variable in quaternion field are investigated and it is shown that it has infinitely many roots. Then the properties of quaternion algebra over Zp are discussed,and the order of its unit group is determined. Lastly,another ring isomorphism of M2(Zp) and the quaternion algebra over Zp when p satisfies some particular conditions are presented. The ring of quaternion over R,denoted by R[i,j,k],is a quaternion algebra. In this paper,the roots of quadratic equation with one variable in quaternion field are investigated and it is shown that it has infinitely many roots. Then the properties of quaternion algebra over Zp are discussed,and the order of its unit group is determined. Lastly,another ring isomorphism of M2(Zp) and the quaternion algebra over Zp when p satisfies some particular conditions are presented.
作者 秦应兵
机构地区 School of Mathematics
出处 《Journal of Southwest Jiaotong University(English Edition)》 2010年第4期349-352,共4页 西南交通大学学报(英文版)
关键词 Quaternion algebra Quadric equation with one variable Modulo p residue class ring Unit group Ring isomorphism Quaternion algebra Quadric equation with one variable Modulo p residue class ring Unit group Ring isomorphism
  • 相关文献

参考文献8

  • 1韦扬江,唐高华,林光科.Z_n上四元数代数Z_n[i,j,k]的零因子和单位群(英文)[J].广西科学,2009,16(2):147-150. 被引量:1
  • 2韦扬江,唐高华,林光科.四元数代数Z_n[i,j,k]的素谱和根(英文)[J].广西师范学院学报(自然科学版),2009,26(1):1-10. 被引量:1
  • 3Serodio R.Computing the zeros of quaternion polynomi- als. Computers and Mathematics With Applications . 2001
  • 4LamT Y.A first course in noncommutative rings. . 1991
  • 5Pan C D,Pan C B.Elementary number theory. . 2003
  • 6A Serodio,L-S Siu.Zeros of quaternion polynomials. Applied Mathematics Letters . 2001
  • 7Allan J.Introduction to topic detection and tracking. Topic Detection and Tracking:Event- based Information Organization . 2002
  • 8Farebrother R W,Gro J,Troschke S O.Matrix Representation of Quaternions. Linear Algebra and Its Applications . 2003

二级参考文献15

  • 1PAN C D, PAN C B. Elementary Number Theory[M]. 2nd ed. Beijing. Beijing University Publishing Company, 2005.
  • 2LAM T Y. A First Course In Noncomrnutative Rings[M]. New York: Springer Verlag, 1991.
  • 3FONG K Q. Commutative Algebra[M]. Beijing: Higher Education Press, 1986.
  • 4ZHANG F Z. Quatemions and matrices of quaternions[J]. Linear Algebra and Its Applications, 1997, 251: 21-57.
  • 5SER6DIO R, SIU LOK - SHUN. Zeros of quatemion polynomials[J ]. Applied Mathematices Letters, 2001, 14: 237-239.
  • 6SERoDIO R, PEREIRA E, VIToRIA J. Computing the zercs of quaterinon polynomials[J]. Computers and Mathematics with Applications, 2001, 42:1229-1237.
  • 7HUANG L, SO W. Quadratic formulas for quaternions[J]. Applied Mathematices Letters, 2002, 15. 533-540.
  • 8FAREBROTHER R W, GROβ Jiirgen, TROSCHKE Sven-Oliver. Matrix representation of quaternions[J]. Linear Algebra and its Applications, 2003, 362 : 251-255.
  • 9SU H D, TANG G H. The prime spectrum and zerodivisor of Zn [ i ] [J]. Journal of Guangxi Teachers Education University, 2006, 23(4) : 1-4.
  • 10TANG G H, SU H D, ZHAO Shou-xiang. The properties of zero-divisor graph of Z, [ i ] [J]. Journal of Guangxi Normal University, 2007,25(3) :32-35.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部