期刊文献+

一种基于视觉注意机制的感知物体提取算法

Extraction Algorithm of Perceptual Object Based on Visual Attention Mechanism
下载PDF
导出
摘要 针对图像中感知物体提取问题,借鉴认知学对视觉信息表达的研究成果,提出一种感知物体的数学定义,并由视觉注意计算模型得到的视觉注意显著图选择区域增长算法的种子区域。建立图像中感知物体的马尔可夫随机场模型,通过度量图像中感知物体的显著性、边缘和同质性分布情况,最小化能量函数提取出图像中的感知物体。对含有飞机的图像中感知物体的提取实验,验证了提出算法的有效性、以及在认知上的合理性。 Extraction of perceptual object is a difficult and significant work in image analysis and understanding. It is convenient for further image processing, such as object recognition, scene classification. Aiming at the object extraction problem of perceptual object in image, a mathematic definition of perceptual object is proposed based on the visual representation research achievement. The seed of the region growing algorithm is selected by the salient map through the visual attention com putation model, the Markov random field model of the perceptual object is built. The object is extracted by minimizing the energy function by the measurement of the salient, edge, and homogeneous of the object in the image. The efficiency and rationality in cognition of the proposed algorithm are demonstrated by the experiment results for the images including planes.
作者 邵静
出处 《现代电子技术》 2010年第20期71-74,共4页 Modern Electronics Technique
关键词 视觉注意机制 感知物体 区域增长 马尔可夫随机场 visual attention mechanism perceptual object region growing Markov random field
  • 相关文献

参考文献11

  • 1KOCH C, ULLMAN S. Shifts in selective visual attention: Towards the underlying neural circuitry[J].Human Neurobiology, 1985, 4: 219-227.
  • 2ITTI L, KOCH C. Computational modeling of visual attention[J].Nature Neuroscience, 2001, 2:194- 203.
  • 3WALTHER D, KOCH C. Modeling attention to salient proto-objects[J]. Neural Networks, 2006, 19 (9): 1395- 1407.
  • 4FORSYTH D A, PONCE J. Computer vision: a modern approach[M]. US: Prentice Hall, 2002.
  • 5TREISMAN A. Feature binding, attention and object perception[J].Philosophical Transactions of the Royal Society, Series B, 1998, 353: 1295-1306.
  • 6王甦 汪安圣.认知心理学[M].北京:北京大学出版社,1992..
  • 7CHEN L, ZHANG S W, SRINIVASAN M V. Global perception in small brains: topological pattern recognition in honeybees[J]. PNAS, 2003, 100(11): 6884 -6889.
  • 8SONKAM HLAVACV BOYLER 艾海舟 武勃 译.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2003..
  • 9LI S Z. Markov random field modeling in image analysis[M]. New York: Springer-Verlag, 2001.
  • 10MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of 1EEE Conference on Computer Vision. [S. l ]: IEEE, 2001: 416-425.

二级参考文献1

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部