摘要
应用Riccati变换、广义Riccati变换以及加权值不等式等技巧,讨论了一般非线性带有无阻尼的微分方程方程[r(t)k1(x(t),x'(t))|x'(t)|α-1x'(t)]'+p(t)k2(x(t),x'(t))|x'(t)|α-1x'(t)+q(t)φ(x(g1(t)),x'(g2(t)))f(x(t))=0,α>0解的振荡性.通过引入Y函数Y={Φ∈C1(E,R)|,Φ(t,t,l)=Φ(t,l,l)=0,Φ(t,s,l)≠0,l<s<t,E={(t,s,l)|t0≤l≤s≤t<∞},以及H函数H={H∈C1(D,R+)|,H(t,t)=0,H(t,s)>0,-∞<s<t<∞,D={(t,s)|-∞<s<t<∞}给出了一些相应的振荡解的判别准则.
This paper concerns the oscillation of solutions to the differential equation [r(t)k1(x(t),x'(t))|x'(t)|α-1x'(t)]'+p(t)k2(x(t),x'(t))|x'(t)|α-1x'(t)+q(t)φ(x(g1(t)),x'(g2(t)))f(x(t))=0,α0.By using Riccati technique,generalized Riccati technique and weighted inequality,and introducing function Y={Φ∈C1(E,R)|,Φ(t,t,l)=Φ(t,l,l)=0,Φ(t,s,l)≠0,lst,E={(t,s,l)|t0≤l≤s≤t∞} and H={H∈C1(D,R+)|,H(t,t)=0,H(t,s)0,-∞st∞,D={(t,s)|-∞st∞},new oscillation criteria are established.
出处
《山东理工大学学报(自然科学版)》
CAS
2010年第5期37-40,共4页
Journal of Shandong University of Technology:Natural Science Edition
关键词
非线性
二阶
振荡
nonlinear
second-order
oscillation