期刊文献+

切换到高一层路网最近四个点的最短路算法

Fast computation for point-to-point shortest path based on four closest nodes in higher level road network
下载PDF
导出
摘要 针对基于大规模图的最短路问题求解速度慢的问题,提出了一个基于路网等级的求最短路的快速近似算法。该算法首先求出高一层路网到起点的4个最近点和到终点的4个最近点及最短路径,由高一层路网形成的子图T再加上这8个最短路径形成图T′,在T′上求起点到终点的最短路。这种设计使得该算法适合在超大规模图上求解,理论上也证明了精度可控,同时预处理数据也是可行的,从而使两点间最短路的求解速度大大提高。在纽约公路网上的测试结果说明了该算法的有效性和合理性。 The point-to-point shortest path computation is one of the hot research topics today. One straight forward application is to find the optimal driving directions. To solve the difficulties in shortest path computation for large scale graph, an efficient approximation algorithm was proposed based on road network hierarchies. Four closest nodes in higher level road network to starting node and four closest nodes to ending node were computed first along with 8 corresponding shortest paths. For subgraph T which consists of only higher level roads, 8 edges corresponding to the previously computed 8 shortest paths were then added to T and results in a graph T′. In graph T′, search for the shortest path from starting node to ending node, which completed the task. This design demonstrates that the proposed algorithm is suitable to solve large scale problems. An error bound is provided for approximation shortest path. It is also possible to preprocess the data first. In real application, the computational results are quite competitive, which shows that the proposed algorithm is effective.
作者 滕聪
出处 《计算机应用》 CSCD 北大核心 2010年第11期2880-2883,3001,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61070230)
关键词 最短路问题 DIJKSTRA算法 大规模计算 路网等级 时间复杂度 shortest path problem Dijkstra algorithm large scale computation road network hierarchy time complexity
  • 相关文献

参考文献14

  • 1DIJKSTRA E. A note on two problems in connexion with graphs [ J]. Numerische Mathematik, 1959, 1(1) : 267 -271.
  • 2FREDMAN M L, TAR JAN R E. Fibonacci heaps and their uses in improved network optimization algorithms[J]. Journal of the Association for Computing Machinery, 1987, 34(3) : 596 -615.
  • 3KOHLER E , MOHRING R , SCHILLING H . Fast point-to-point shortest path computation with arc-flags [ EB/OL]. [ 2009 - 12 - 12]. http://www, math. tu-berlin, de/coga/people/schillin/pub/ 20061113-DIMACS. pdf.
  • 4LAUTHER U. An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background [ EB/OL]. [2009 - 12 - 12]. https://gor, uni-paderborn, de/Members/ AGO6/LAUTHER. PDF.
  • 5LAUTHER U. Slow preprocessing of graphs for extremely fast shortest path calculations [ C]// Lecture at the Workshop on Computational Integer Programming. ZIB: [ s. n. ], 1997.
  • 6GOLDBERG A V, HARRELSON C. Computing the shortest path: A * search meets graph theory [ C]//Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Vancouver: SIAM, 2005:156 - 165.
  • 7GOLDBERG A V, WERNECK R F. Computing point-to-point shortest paths from external memory [ C]//Proceedings of the 7th Work-shop on Algorithm Engineering and Experiment (ALENEX) . Vancouver: SIAM, 2005:26 -40.
  • 8GOLDBERG A V, KAPLAN H, WERNECK R F. Reach for A* : Efficient point-to-point shortest path algorithms [ C]// ALENEX: proceedings of the 8th Workshop on Algorithm Engineering and Experiment. Vancouver: SIAM, 2006.
  • 9SANDERS P, SCHULTES D. Highway hierarchies hasten exact shortest path queries [ C]// Proceedings of the 13th Annual European Symposium. Berlin: Springer, 2005:568 -579.
  • 10SANDERS P, SCHULTERS D. Engineering highway hierarchies [ C]// Proceedings of the 14th Annual European Symposium on Algorithms. Berlin: Springer, 2006:804 - 816.

二级参考文献31

  • 1郑年波,李清泉,徐敬海,宋莺.基于转向限制和延误的双向启发式最短路径算法[J].武汉大学学报(信息科学版),2006,31(3):256-259. 被引量:32
  • 2李楷,钟耳顺,曾志明,曹国峰.基于分层网络拓扑结构的最优路径算法[J].中国图象图形学报,2006,11(7):1004-1009. 被引量:21
  • 3胡树玮,张修如,赵洋.扇形优化Dijkstra算法[J].计算机技术与发展,2006,16(12):49-51. 被引量:6
  • 4李清泉,郑年波,徐敬海,宋莺.一种基于道路网络层次拓扑结构的分层路径规划算法[J].中国图象图形学报,2007,12(7):1280-1285. 被引量:24
  • 5Huang B, Wu Q, Zhan F B. A Shortest Path Algorithm with Novel Heuristics for Dynamic Transportation Networks. International Journal of Geographical Information Science, 2007, 21(6) : 625 -644.
  • 6Car A, Frank A U. General Principles of Hierarchical Spatial Reasoning: The Case of Wayfinding, In Proceedings of the Conference on Spatial Data Handling. Edinburgh, Scotland, UK, 1994, 2: 646-664.
  • 7Kuipers B, Levitt T S. Navigation and Mapping in Largescale Space, AI Magazine, 1988, 9(2) : 25 -43.
  • 8Huang Y, Jing N. et al. A hierarchical Path View Model for Path Finding in ITS, GeoInformatica, 1997, 1 (2) : 125 - 159.
  • 9Goldbergav M.Expected performance of Dijkstra's shortest path algorithm[D].Princeton,NJ,USA:Princeton University,1996.
  • 10Jing N,Huang Y.Hierarchical encoded path views for path query processing:An optimal model and its performance evaluation[J].IEEE Transaction.Knowledge and Data Engineering,1998,10 (3):409 ~ 432.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部