期刊文献+

基于小世界模型的流形学习算法 被引量:1

Manifold learning algorithm based on the small world model
下载PDF
导出
摘要 等距特征映射(ISOMAP)不仅计算复杂度很高,而且缺乏对新样本的学习能力。基于标志点的ISOMAP(L-ISOMAP)通过只保持一些标志点之间的测地线距离有效地降低了复杂度,然而标志点集的随机选择常常会导致较差的嵌入结果。为此,提出了一种基于小世界模型的流形学习算法。根据小世界模型的原理,该算法仅仅保持每个样本点与其k个最近邻和一些随机选择的远点之间的测地线距离,采用最速梯度下降法优化来得到数据的低维表示。理论分析表明,该算法的计算复杂度远远低于ISOMAP的复杂度。利用应力函数和剩余方差对3个算法进行了比较。实验结果表明,从该算法得到的结果与从ISOMAP得到的结果相近,且优于从L-ISOMAP得到的结果。同时,该算法可以实现对新样本的学习,对噪声也不太敏感。 Isometric Feature Mapping (ISOMAP) not only has high complexity but also can not learn new samples. L-ISOMAP has lower complexity by only preserving the geodesic distances between some landmark points. However, landmark point set randomly selected often leads to worse embedding results. A manifold learning algorithm based on the small world model was proposed, which only preserve the geodesic distances between each point and its k nearest neighbors as well as some distant points randomly chosen according to the small world model. The deepest gradient descent method was used to optimize the iterative process to obtain the low dimensional representation of data. The theoretic analysis demonstrates that the complexity of the proposed algorithm is far below one of ISOMAP. The stress function and the residual variance were used to compare the three methods. The experiments show that the results from the new method are close to those from ISOMAP and are superior to those from L-ISOMAP. Moreover, the algorithm can treat new data and is also not sensitive to noise.
出处 《计算机应用》 CSCD 北大核心 2010年第11期2917-2920,共4页 journal of Computer Applications
基金 天津市应用基础及前沿技术研究计划项目(10JCZDJC16000)
关键词 流形学习 等距特征映射 最速梯度下降 小世界模型 标志点 manifold learning Isometric Feature Mapping (ISOMAP) deepest gradient descent small world model landmark point
  • 相关文献

参考文献17

  • 1VLACHOS M, DOMENICONI C, GUNOPULOS D, et al. Non-linear dimensionality reduction techniques for classification and visualization [ C]// Proceedings of the 8th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002:645-651.
  • 2JENKINS 0 C, MATARIC M J. A spatlo-temporal extension to ISO- MAP nonlinear dimension reduction [ C]//Proceedings of the International Conference on Machine Learning. New York: ACM Press, 2004:441-448.
  • 3翁时锋,张长水,张学工.非线性降维在高维医学数据处理中的应用[J].清华大学学报(自然科学版),2004,44(4):485-488. 被引量:11
  • 4ZHANG J, LI S, WANG J. Manifold learning and applications in recognition [ C]// Intelligent Multimedia Processing with Soft Computing. Berlin: Springer-Verlag, 2004:281 -300.
  • 5谭璐,易东云,吴翊,袁伟.基于非线性降维的图像识别[J].计算机工程,2005,31(13):54-55. 被引量:4
  • 6ZENG X, LUO S, WANG J, Auto-associative neural network system for recognition [ C]// Proceedings of the 6th International Conference on Machine Learning and Cybernetics. Washington, DC: IEEE Press, 2007:2885-2890.
  • 7尹峻松,肖健,周宗潭,胡德文.非线性流形学习方法的分析与应用[J].自然科学进展,2007,17(8):1015-1025. 被引量:19
  • 8PLESS R, 'SOUVENIR R. A survey of manifold learning for images [ J]. IPSJ Transactions on Computer Vision and Applications, 2009, 1:83-94.
  • 9王自强,钱旭.基于流形学习和SVM的Web文档分类算法[J].计算机工程,2009,35(15):38-40. 被引量:14
  • 10TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [ J]. Science, 2000, 290(5500): 2319-2323.

二级参考文献67

  • 1Vapnik V N.The Nature of Statistical Learning Theory[M].New York,USA:Springer,1995.
  • 2He Xiaofei,Niyogi P.Locality Preserving Projections[C]//Proc.of Conf.on Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2003:291-298.
  • 3Cai Deng,He Xiaofei,Han Jiawei.Document Clustering Using Locality Preserving Indexing[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(12):1624-1637.
  • 4Sha Fei,Saul L K,Lee D D.Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines[C]//Proc.of Conf.on Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2002:1041-1048.
  • 5Platt J.Fast Training of Support Vector Machines Using Sequential Minimal Optimization[C]//Proc.of Conf.on Advances in Kernel Methods-Support Vector Learning.Cambridge,USA:MIT Press,1999:185-208.
  • 6Sirovich L, Kirby M. A Low-dimensional Procedure for the Characterization of Human Faces, J. Opt. Soc. Amer. A, 1987, 4(3):519-524.
  • 7Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991,3:71-86.
  • 8Pentland A, Moghaddam B. View-based and Modular Eigenspaces for Face Recognition. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994:84-91.
  • 9Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Advances in Neural Information Processing Systems 15. Vancouver, British Columbia, Canada, 2001.
  • 10陈维恒 李兴校.黎曼几何引论[M].北京:北京大学出版社,2002..

共引文献44

同被引文献22

  • 1陈涛,谢阳群.文本分类中的特征降维方法综述[J].情报学报,2005,24(6):690-695. 被引量:79
  • 2中文自然语言处理开放平台[EB/OL].(2002-08-16).[2007-07-11].http://www.nlp.org.cn/project/project.php?proj_id=6.
  • 3LI B, ZHENG C H, HUANG D S. Locally linear discriminant embedding: an efficient method for face recognition [ J]. Pat- tern Recognition, 2008 (41) : 3813-3821.
  • 4ROWELS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290 (5500) : 2323-2326.
  • 5LI H F, JIANG T, ZHANG K S. Efficient and robust feature extraction by maximum margin criterion [ J]. IEEE Transaction on Neural Networks, 2006, 17 (1) : 157-165.
  • 6谭松波,王月粉.中文文本分类语料库-TanCorpVl.0.[EB/OL].[2010-10-15].http://www.search-forum.org.crt/tansongbo/corpus.htm.
  • 7BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: recognition using class specific line- ar projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 711- 720.
  • 8MOGHADDAM B, PENTLAND A. Probabilistic visual learn- ing for object representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 696-710.
  • 9BAI X M, YIN B C, SHI Q, et al. Face recognition based on supervised locally linear embedding method [ J ]. Journal of In- formation & Computation Science, 2005 (4) : 641-646.
  • 10ALTER O, BROWN P O, BOTSTEIN D. Processing and mod- eling genome-wide expression data using singular value decom- position [ J ]. Progress in biomedical optics and imaging, 2001, 23 (2) : 171- 186.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部