期刊文献+

M-估计耦合双边滤波的正则化超分辨率重建 被引量:2

Regularized super-resolution reconstruction based on M-estimation and bilateral filtering
下载PDF
导出
摘要 在正则化超分辨率重建框架下,基于M-估计理论和双边滤波思想,建立了一种鲁棒的超分辨率重建统一能量泛函。该能量泛函融合了M-估计的鲁棒性处理机制和双边滤波的双重异性加权机制,提高了算法的鲁棒性和边缘保持特性。鉴于采用最小二乘估计的CLS算法和采用最小一乘估计的Farsiu重建算法在边缘保持特性方面存在的不足,在算法实现时选用了Huber稳健M-估计。不论是视觉效果还是峰值信噪比(PSNR),实验结果都表明该算法的有效性。 In regularized super-resolution reconstruction framework, a unified and robust energy function for super-resolution reconstruction was constructed, which incorporated both the robustness of M-estimation and the double-weighting idea of bilateral filtering, and hence behaving much better in robustness and edge-preserving. Because of drawback of the constrained least square algorithm using least square estimator and Farsiu's algorithm using least absolute deviation estimator in the edge-preserving, the robust Huber estimator was used in the unified energy function. The experimental results demonstrate the effectiveness of proposed algorithm, both in the visual effect and the Peak Signalto Noise Ratio (PSNR) value.
作者 丁静 王培康
出处 《计算机应用》 CSCD 北大核心 2010年第11期3005-3007,共3页 journal of Computer Applications
关键词 正则化超分辨率重建框架 M-估计 双边滤波 边缘保持特性 Huber估计 regularized super-resolution reconstruction M-estimation bilateral filtering edge-preserving characteristic Huber estimation
  • 相关文献

参考文献13

  • 1PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technique overview [ J]. IEEE Signal Processing Magazine, 2003, 20(3) : 21 - 26.
  • 2KATSAGGELOS A K. Digital image restoration [M]. Berlin: Springer-Verlag, 1991.
  • 3HUBER P J, RONCHETTI E M. Robust statistics [ M]. 2nd ed. New Jersey: John Wiley & Sons, 2009.
  • 4FARSIU S, ROBINSON M D. Fast and robust multiframe super-resolution [ J]. IEEE Transactions on Image Processing, 2004, 13 (10) : 1327 - 1344.
  • 5PATANAVIJI V, TAE-O-SOT S, JITAPUNKUL S. A robust iteratire super-resolution reconstruction of image sequences using a Lorentzian Bayesian approach with fast affine block-based registration [ C]// 2007 International Conference on Image Processing. Washington, DC: IEEE, 2007:393-396.
  • 6TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images [ C]//ICCV '98 International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 1998:839-846.
  • 7ELAD M, FEUER A. Restoration of signal super-resolution image from several blurred, noisy and downsampled measured images [ J]. IEEE Transactions on Image Processing, 1997, 6( 12):1646- 1658.
  • 8MILLER K. Least-squares method for ill-posed problems with a prescribed bound [ J]. SIAM Journal on Mathematical Analysis, 1970, 1(1):52 -74.
  • 9RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ DJ. Minneapolis: University of Minnesota, 1992.
  • 10BLACK A, RANGARAJAN A. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision [J]. International Journal of Computer Vision, 1996, 19(1): 57 - 92.

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部