期刊文献+

基于超图结构的知识相似度计算模型研究 被引量:3

A Model for Knowledge Similarity Metrics Based on Hypergraph Structure
下载PDF
导出
摘要 知识表示是知识管理问题的基础,关于知识表示的方法可以划分为基于特征和基于结构两类,其中基于结构的方法支持知识对象内部关联结构的描述,近年来受到广泛的重视,但已有研究大多以经典图论作为形式化基础,其局限性在于对多元关系知识表示上存在不足,为此本文引入了经典图的泛化——超图,并对其基本概念进行扩展,定义了超图结构以进行多元关系知识的表示,在对对应、相邻度等相关概念进行定义的基础上提出了一种基于超图结构的知识相似度计算模型,其计算步骤包括知识对象可比分析、对应求解以及相似度计算,最后通过两组实验验证了模型的有效性。 Knowledge representation is the foundation of knowledge management issues,and the methods of knowledge representation could be classified into two categories as feature-based and graph-structured.Graph- structured representations are capable of expressing the inherent relations between knowledge objects,and have attached great attentions recently.However, most of researches are based on classic graph theory,which is insufficient for the representation of knowledge where N- ary associations exist.In this paper we introduce and extend hypergraph,the generalization of classical graph,and propose the definition of hypergraph structure to represent knowledge.Based on some related definitions such as corresbondence and degree of adjacency,a model of similarity measure for hypergraph structure is proposed,the computational procedure of which is consists of comparability analysis,correspondence solving,and similarity degree computing.Finally the usefulness of our method is verified by two groups of experiments.
出处 《情报学报》 CSSCI 北大核心 2010年第5期805-812,共8页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金重点项目——移动商务的基础理论与技术方法研究(70731001) 国家自然科学基金——企业市场机遇发现支持技术与支持系统的研究(70671049) 教育部国家精品课程专项基金
关键词 超图 超图结构 相似度 知识表示 hypergraph hypergraph-structure similarity measure knowledge representation
  • 相关文献

参考文献21

  • 1Mantaras R L,Plaza E.Case-based reasoning:an overview[J].AI Communications,1997(10):21-29.
  • 2Sanders K E,Kettler B P,Hendler J A.The case for graph-structured representations[C]// ICCBR 97,Berlin:Springer-Verlag,1997:245-254.
  • 3Petrovic S,Kendall G,Yang Y.A tabu search approach for graph-structure case retrieval[C]// STarting Artificial Intelligence Researches Symposium,STAIRS 2002,Lyon:IOS press,2002:55-64.
  • 4Jong B,Wu Y,Chan T.Dynamic grouping strategies based on a conceptual graph for cooperative Learning[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(6):738-747.
  • 5Ruikar D,Anumba C J,Duke A,et al.Using the semantic web for project information management[J].Facilities,2007,25(13/14):507-524.
  • 6Kim M,Kim C O,Hong S R,et al.Forward-backward analysis of RFID-enabled supply chain using fuzzy cognitive map and genetic algorithm[J].Expert Systems with Applications,2008,35(3):1166-1176.
  • 7王众托,王志平.超网络初探[J].管理学报,2008,5(1):1-8. 被引量:102
  • 8Fayek R E,Wong A.Using hypergraph knowledge representation for natural terrain robot navigation and path planning[C]// Proceedings of 1996 IEEE International Conference on Robotics and Automation,Minneapolis,Minnesota,1996,4:3625-3630.
  • 9Khanna G,Vydyanathan N,Kurc T.A hypergraph partitioning based approach for scheduling of tasks with batch-shared I/O[C]// Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid (CCGrid'05),2005,2:792-799.
  • 10Watson I,Marir F.Case-based reasoning:A review[J].The Knowledge Engineering Review,1994,9(4):327-354.

二级参考文献18

共引文献129

同被引文献64

引证文献3

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部