期刊文献+

面向网络评论的观点主题识别研究 被引量:2

Research on the Identification of Opinion Topic Expressed in Web Comments
下载PDF
导出
摘要 网络评论的观点分析为及时掌握广大民众的真实观点提供了渠道。观点主题识别作为观点分析的重要组成部分,用以确定观点所指的对象。本文设计了一种领域无关的观点主题识别算法,该算法以网络评论中观点主题产生的方式为依据,采用由内到外的识别过程,分四个部分完成观点主题识别:内部主题词识别、内部主题构建、外部主题识别和主题的组织。算法能够克服分词和短语类主题带来的影响,识别出语义完整的观点主题。对实际网络评论语料进行测试的结果表明,本文的算法能够有效地识别网络评论中的观点主题。 Opinion analysis of network reviews provides a channel to find out the viewpoint of the common people in time, and opinion topic identification,as a significant part of opinion analysis,is aimed at identifying the objects for the expressed opinions.This paper proposes an opinion topic identification algorithm within independent domain.The algorithm,based on the mode of building opinion topic in network reviews,employs the process to identify the topics from inner to outer,and the process is finished through four steps:Inner topic word identification,Inner topic constitution,Outer topic identification and Topic organization.This algorithm can overcome the influence of word-segmentation error and phrase-topic,so it can get opinion topics which have the integrated semantic information.Experiment in real network reviews corpus proves that the algorithm can identify opinion topic in network reviews effectively.
出处 《情报学报》 CSSCI 北大核心 2010年第5期858-863,共6页 Journal of the China Society for Scientific and Technical Information
基金 国家863项目“网络舆情态势分析与预警关键技术研究”(No.2007AA01Z439)资助
关键词 中文信息处理 观点分析 网络评论 观点主题识别 Chinese information processing opinion analysis network reviews opinion topic identification
  • 相关文献

参考文献9

  • 1Kim S M,Hovy E.Determining the sentiment of opinions[C]// Proceedings of the 20th International Conference on Computational Linguistics (COLING-04).Switzerland,2004:1367-1373.
  • 2Stoyanov V,Cardie C.Topic identification for fine-grained opinion analysis[C]// Proceedings of the 22th International Conference on Computational Linguistics (COLING-08).Manchester,2008:817-824.
  • 3Hu M Q,Liu B.Mining opinion features in customer reviews[C]// Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04).California,2004:755-760.
  • 4Popescu A M,Etzioni O.Extracting product features and opinions from reviews[C]// Proceedings of the Joint Conference of Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP-05).Vancouver,2005:339-346.
  • 5Liu B,Hu M Q,Cheng J S.Opinion observer:analyzing and comparing opinions on the Web[C]// Proceedings of the 20th International World Wide Web Conference (WWW-05).Chiba,2005:342-351.
  • 6姚天NFDA2,聂青阳,李建超.一个用于汉语汽车评论的意见挖掘系统[C]// 中国中文信息学会二十周年学术会议,2006:260-281.
  • 7Stoyanov V,Cardie C.Annotating topics of opinions[C]// Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC-08).Marrakech,2008:3213-3217.
  • 8Kim S M,Hovy E.Extracting opinions,opinion holders,and topics expressed in online news media text[C]// Proceedings of the Joint Conference of the International Committee on Computational Linguistics and the Association for Computational Linguistics (ACL/COLING-06).Sydney,2006:1-8.
  • 9Han J W,Kamber M.Data Mining Concepts and Techniques[M].Beijing:Higher Education Press,2001:234-250.

同被引文献29

  • 1柴晋颖,王飞绒.虚拟社区研究现状及展望[J].情报杂志,2007,26(5):101-103. 被引量:48
  • 2Chieh-Peng Lin,Anol Bhattaeherjee. Understanding onlinesocial support and its antecedents: A socio-cognitive model [ J ]. The Social Science Journal, 2009 ( 46 ) : 724 -737.
  • 3Feng Li,Timon C Du. Who is talking? An ontology-based opinion leader identi? cation framework for word-of-mouth marketing in online social blogs [ J ]. Decision Support Systems,2011(51): 190 - 197.
  • 4Zhai Zhongwu, Xu Hua. Identifying Opinion Leaders in BBS [ C ]//Proc of Web Intelligence and Intelligent Agent Technology,2008 : 398-401.
  • 5Krulwich B, Burkey C. GontactFinder: Extracting indications of expertise and answering questions with referrals [ C ]//In Symposium on Intelligent Knowledge Navigation and Retrieval,1995 :$5-91.
  • 6Tang J, Sun J, Wang C, et al. Social influence analysis in large-scale networks [ C]//In 15th ACM SIGKDD international conference on Knowledge discovery and data mining ACM New York,2009 : 807-816.
  • 7Adamic L A, Zhang J, Bakshy E, et al. Knowledge sharing and yahoo answers: everyone knows something [ C]. In Proceeding of the 17th international Conference on World Wide Web,2008: 665-674.
  • 8Welser H T, Gleave E, Fisher D, et al. Visualizing the signatures of social roles in online discussion groups [ J ]. The Journal of Social Structure ,2007,8 (2) :1-32.
  • 9高俊波,杨静.在线论坛中的意见领袖分析[J].电子科技大学学报,2007,36(6):1249-1252. 被引量:30
  • 10张立,刘云.虚拟社区网络的演化过程研究[J].物理学报,2008,57(9):5419-5424. 被引量:32

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部