期刊文献+

情感词汇共现网络的复杂网络特性分析 被引量:11

The Complexity Analysis of the Emotional Word Co-occurrence Network
下载PDF
导出
摘要 本文从情感计算这一热点研究问题出发,分析了情感词汇共现网络的定义与构建原理,阐述了对其小世界效应、无标度特性、网络弹性、度相关性等复杂网络统计学特性进行研究的方法。为了检验这些统计学特性,从22157条网络评论中抽取出1284个情感词汇,并通过统计其在12000条评论语句中的共现情况建立了情感词汇共现网络。经计算,该网络的平均最短路径为2.89,群聚系数为0.19,表明其具有小世界效应;该网络的顶点度和边权重都呈幂律分布,表明其具有无标度特性。研究结果还表明,情感词汇共现网络的顶点度、顶点强度和顶点交互系数之间具有正相关性,是同类混合网络。 Emotional computing is becoming a hot topic.From this,the definition and construction of the Emotional Word Co-occurrence Network(EWCN) is firstly analyzed.Then,the paper elaborate the approach to study the small-world effect, scale-free degree distribution,network resilience,mixing patterns and other statistical properties of EWCN.To validate this,1284 emotional words are extracted from 22157 online customer reviews,and then the EWCN is constructed by counting the distribution of the 1284 words in 12000 sentences.The results show that the average path length is 2.89 and the clustering coefficient is 0.19, which is consistent with the small-world effect.The vertex degree distribution and edge weights distribution obey the power-law distribution,indicating that EWCN has a scale-free structure.The results also show that the degree of a vertex is proportional to its strength and interaction coefficient,and EWCN is an assortative mixing network.
作者 余传明 周丹
出处 《情报学报》 CSSCI 北大核心 2010年第5期906-914,共9页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金项目(编号:70903047)
关键词 词汇共现网络 复杂网络 小世界 无标度网络 顶点度分布 co-occurrence network complex network small world scale-free network degree distribution
  • 相关文献

参考文献15

二级参考文献101

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 3H Y Tan. Chinese place automatic recognition research. In: C N Huang, Z D Dong, eds. Proc of Computational Language.Beijing: Tsinghua University Press, 1999
  • 4Zhang Huaping, Liu Qun, Zhang Hao, et al. Automatic recognition of Chinese unknown words recognition. First SIGHAN Workshop Attached with the 19th COLING, Taipei, 2002
  • 5S R Ye, T S Chua, J M Liu. An agent-based approach to Chinese named entity recognition. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 6J Sun, J F Gao, L Zhang, et al. Chinese named entity identification using class-based language model. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 7Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc of IEEE, 1989,77(2): 257~286
  • 8Shai Fine, Yoram Singer, Naftali Tishby. The hierarchical hidden Markov model: Analysis and applications. Machine Learning,1998, 32(1): 41~62
  • 9Richard Sproat, Thomas Emerson. The first international Chinese word segmentation bakeoff. The First SIGHAN Workshop Attached with the ACL2003, Sapporo, Japan, 2003. 133~143
  • 10J Hockenmaier, C Brew. Error-driven learning of Chinese word segmentation. In: J Guo, K T Lua, J Xu, eds. The 12th Pacific Conf on Language and Information, Singapore, 1998

共引文献689

同被引文献173

引证文献11

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部