期刊文献+

High Range Resolution Profile Automatic Target Recognition Using Sparse Representation 被引量:2

基于稀疏表示的高分辨距离像自动目标识别(英文)
原文传递
导出
摘要 Sparse representation is a new signal analysis method which is receiving increasing attention in recent years. In this article, a novel scheme solving high range resolution profile automatic target recognition for ground moving targets is proposed. The sparse representation theory is applied to analyzing the components of high range resolution profiles and sparse coefficients are used to describe their features. Numerous experiments with the target type number ranging from 2 to 6 have been implemented. Results show that the proposed scheme not only provides higher recognition preciseness in real time, but also achieves more robust performance as the target type number increases. Sparse representation is a new signal analysis method which is receiving increasing attention in recent years. In this article, a novel scheme solving high range resolution profile automatic target recognition for ground moving targets is proposed. The sparse representation theory is applied to analyzing the components of high range resolution profiles and sparse coefficients are used to describe their features. Numerous experiments with the target type number ranging from 2 to 6 have been implemented. Results show that the proposed scheme not only provides higher recognition preciseness in real time, but also achieves more robust performance as the target type number increases.
作者 周诺 陈炜
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期556-562,共7页 中国航空学报(英文版)
关键词 automatic target recognition high range resolution profile sparse representation feature extraction dictionary generation automatic target recognition high range resolution profile sparse representation feature extraction dictionary generation
  • 相关文献

参考文献2

二级参考文献12

  • 1冯德军,陶华敏,丹梅,肖顺平,王国玉.弹道目标雷达宽带识别仿真与评估[J].系统仿真学报,2006,18(1):225-228. 被引量:7
  • 2辛欣,张效民.基于S-变换的水中目标特征提取[J].电声技术,2007,31(1):10-12. 被引量:5
  • 3Assous S, Humeau A, Tartas M, et al. S-transform applied to laser doppler flowmetry reactive hyperemia signal [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6) : 1032-1037.
  • 4Dash P K, Behera H S, Lee I W C. Time sequence data mining using time-frequency analysis and soft computing techniques[J]. Applied Soft Computing, 2008, 8 (1) : 202-215.
  • 5Schimmel M, Gallart J. The inverse S-transform in filters with time-frequency localization [J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4417-4422.
  • 6Chen V C, Li F, Ho S S, et al. Analysis of micro-Doppler signatures[J]. Radar, Sonar and Navigation, IEE Proceedings, 2003, 150(4): 271-276.
  • 7Dangwei W, Xinyi M, Yi S. Radar target identification using a likelihood ratio test and matching pursuit technique [J]. Radar, Sonar and Navigation, IEE Proceedings, 2006, 153(6): 509-515.
  • 8Stoekwell R G, Mansinhal L, Lowe R P. Localization of the complex spectrum: the S-transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4):998-1001.
  • 9鲜明,庄钊文,郭桂蓉,肖顺平,陈曾平.基于时频分析的飞机目标识别[J].国防科技大学学报,1997,19(3):7-11. 被引量:8
  • 10姜卫东,陈曾平,庄钊文.复杂目标的时频特征提取及识别方法研究[J].电子科学学刊,2000,22(3):353-358. 被引量:3

共引文献14

同被引文献32

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部