期刊文献+

空间机器人捕获漂浮目标的抓取策略研究(英文) 被引量:4

Grasping Strategy in Space Robot Capturing Floating Target
原文传递
导出
摘要 When the space robot captures a floating target, contact impact occurs inevitably and frequently between the manipulator hand and the target, which seriously impacts the position and attitude of the robot and grasping security. "Dynamic grasping area" is introduced to describe the collision process of manipulator grasping target, and grasping area control equation is established. By analyzing the impact of grasping control parameters, base and target mass on the grasping process and combining the life experience, it is found that if the product of speed control parameter and dB adjustment parameter is close to but smaller than the minimum grasping speed, collision impact in the grasping process could be reduced greatly, and then an ideal grasping strategy is proposed. Simulation results indicate that during the same period, the strategy grasping is superior to the accelerating grasping, in that the amplitude of impact force is reduced to 20%, and the attitude control torque is reduced to 15%, and the impact on the robot is eliminated significantly. The results would have important academic value and engineering significance. When the space robot captures a floating target, contact impact occurs inevitably and frequently between the manipulator hand and the target, which seriously impacts the position and attitude of the robot and grasping security. "Dynamic grasping area" is introduced to describe the collision process of manipulator grasping target, and grasping area control equation is established. By analyzing the impact of grasping control parameters, base and target mass on the grasping process and combining the life experience, it is found that if the product of speed control parameter and dB adjustment parameter is close to but smaller than the minimum grasping speed, collision impact in the grasping process could be reduced greatly, and then an ideal grasping strategy is proposed. Simulation results indicate that during the same period, the strategy grasping is superior to the accelerating grasping, in that the amplitude of impact force is reduced to 20%, and the attitude control torque is reduced to 15%, and the impact on the robot is eliminated significantly. The results would have important academic value and engineering significance.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期591-598,共8页 中国航空学报(英文版)
基金 Program for Innovative Research Team in University(IRT520) CAST of China (20090703)
关键词 space robot capturing target dynamic grasping area grasping strategy active damping control space robot capturing target dynamic grasping area grasping strategy active damping control
  • 相关文献

参考文献3

二级参考文献28

  • 1王滨,姜力,刘宏.HIT/DLR多指手稳定抓取的控制策略[J].华中科技大学学报(自然科学版),2007,35(12):68-71. 被引量:1
  • 2刘延柱,顾晓勤.空间机械臂逆动力学的Liapunov方法[J].力学学报,1996,28(5):558-563. 被引量:18
  • 3ODA M. Experiences and lessons learned from the ETS-VII robot satellite[C]//Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000). San Francisco: IEEE, 2000: 441-460.
  • 4YOSHIDA K. Space robot dynamics and control to orbit, from orbit, and future[C]// HOLLERBACH J M, KODITSCHEK D E. The Ninth International Symposium. Springer: 2000, 449-456.
  • 5LINDBERG RE, LONGMAN. R W, ZEDD M F. Kinematics and reaetion moment compensation for a spaceborne elbow manipulator[C]//Proc. 24^th AIAA Aerospaee Sciences Reno. Nevada: AIAA, 1986: 1-5.
  • 6DUBOWSKY S, TORRES M A. Path planning for space manipulator to minimize spacecraft attitude disturbances[C]// IEEE Int. C. on Robotics and Autom. Sacramento: IEEE, 1991: 2552-2528.
  • 7UMETANI Y, YOSHIDA K. Continuous path control of space manipulators mounted on OMV[J]. Acta Astronaut, 1987, 15(12): 981-986.
  • 8XU Y, KANADE T. Space robotics: dynamics and control[M]. London: Kluwer Academic Publishers, 1992.
  • 9NENCHEV D N, YOSHIDA K. Reaction null-space control of flexible structure mounted manipulator systems[J]. IEEE Trans. on Robot and Automatic, 1999, 15(6) : 1011-1023.
  • 10NENCHEV D N, YOSHIDA K. Impact analysis and post-impact motion control issues of a free-floating space robot subject to a force impulse[J]. IEEE Trans. on Robot and Automatic, 1999, 15(3): 548- 557.

共引文献37

同被引文献29

  • 1Dong P , Yang Z , Yue Z , et al. Dynamic modeling and analysisof space manipulator considering the flexible of joint andlink[J]. Advanced Materials Research, 2013, 823 ( 10 ) :270-275.
  • 2Yoshida K , Uashizume K , Abiko S. Zero reaction maneuver:flight validation with ETS-VH space robot and extension to kinematicallyredundant arm [C] //Robotics and Automation,2001. Proceedings 2001 1CRA. IEEE International Conferenceon. IEEE,2001, 1 : 441-446.
  • 3Nakanishi l i , Yoshida K. Impedance control for free-flyingspace robots-basic equations and applications [C]//20061EEE/RSJ International Conference on Intelligent Robots andSystems. 1EEE,2006: 3137-3142.
  • 4Xu W L , Yue S. Pre-posed configuration of flexible redundantrobot manipulators for impact vibration alleviating [J]. 1EEETransactions on Industrial Electronics, 2004,5 1 (1 ): 195200.
  • 5Matsumoto S, Ohkami Y, Wakabayashi Y, et al. Satellitecapturing strategy7 using agile orbital servicing vehicle,lyper-OSV[C]//Robotics and Automation,2002. Proceedings.1CRAr02. 1EEE International Conference on. 1EEE,2002,3 : 2309-2314.
  • 6翟光,仇越,梁斌,李成.在轨捕获技术发展综述[J].机器人,2008,30(5):467-480. 被引量:40
  • 7张大伟,田浩,赵阳,关英姿,赵丹.类杆锥式对接机构捕获动力学分析与参数设计[J].宇航学报,2008,29(6):1717-1722. 被引量:10
  • 8丛佩超,孙兆伟.空间机械臂捕捉空间目标分析[J].上海航天,2009,26(4):7-11. 被引量:4
  • 9梁斌,徐文福,李成,刘宇.地球静止轨道在轨服务技术研究现状与发展趋势[J].宇航学报,2010,31(1):1-13. 被引量:104
  • 10魏承,赵阳,田浩.空间机器人捕获漂浮目标的抓取控制[J].航空学报,2010,31(3):632-637. 被引量:33

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部