期刊文献+

不同展开方法在间歇过程故障检测中的应用

Fault Detection for Batch Process Using Different Unfolding Method
下载PDF
导出
摘要 间歇过程数据是一个典型的三维数据形式,数据的展开方法在一定程度上影响了所建立的统计模型的精确度。针对这一问题,提出了基于不同展开方式上的核独立元分析(KernelICA)的在线故障检测方法,并应用于青霉素生产过程的数据分析中。仿真结果表明,与传统的在批次方向展开的建模方法相比,所提出的方法大大降低了故障的漏报率,具有更好的故障检测性能。 Batch process data set is a typical three-way array,and the unfolding method impacts the accuracy of statistical models in some extent.In this paper,an online fault detection strategy for batch process that uses different unfolding way and kernel independent component analysis(Kernel ICA) is proposed,and it was applied to data analysis in the simulation benchmark of fed-batch Penicillin production.Simulation results demonstrate the power and advantage of the proposed method in comparison to traditional batch wise modeling method,and the lower missed detection rate is obtained.
作者 王丽
出处 《上海应用技术学院学报(自然科学版)》 2010年第3期175-179,共5页 Journal of Shanghai Institute of Technology: Natural Science
关键词 间歇过程 故障检测 核独立元分析 batch process fault detection Kernel ICA
  • 相关文献

参考文献1

二级参考文献17

  • 1谢磊,何宁,王树青.步进MPCA及其在间歇过程监控中的应用[J].高校化学工程学报,2004,18(5):643-647. 被引量:8
  • 2Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40 (8): 1361-1375.
  • 3Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37 (1) : 41-59.
  • 4Nomikos P, MacGregor J F. Multi way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30 (1) : 97- 108.
  • 5Chen J, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 2002, 57 (1): 63-75.
  • 6Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE Journal, 1998, 44 (7):1596 -1610.
  • 7LiW H, Yue H H, Valle-Cervants S, Qin S J. Rrcursive PCA for adaptive process monitoring. Journal of Process Control, 2000, 10 (5): 471-486.
  • 8Wang D, Romagnoli J A. Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control, 2005, 15 (8) : 869 -882.
  • 9Lu N, Gao F, Wang F. PCA based modeling and on line monitoring strategy for uneven-length batch processes. Industrial and Engineering Chemistry Research, 2004, 43 (13): 3343-3352.
  • 10Yoo CK, LeeJ M, Vanrolleghem P A, Lee I B. On line monitoring of batch processes using multiway independent component analysis. Chemometrics and Intelligent Laboratory Systems, 2004, 71:151-163.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部