期刊文献+

一类图的亏格嵌入

The Embeddings of a Type of Graphs
下载PDF
导出
摘要 在联树模型的基础上,把图在曲面上的嵌入用其联树,也即其关联曲面来表示。然后通过对关联曲面进行分类,建立递推关系式,进而得到了一类异于目前已知嵌入分布的新图类的可定向嵌入分布。 On the basis of the joint tree model,an embedding of a graph on a surface can be rep-resented by a joint tree,further by an associated surface of it.Then by classifying the associated surfaces and direct consideration of a recursion,the genus distributions of the orientable embeddings for a new type of graphs is calculated.It is different from the graphs whose embedding distributions by genus have been obtained.
作者 曹荣荣
出处 《青岛大学学报(自然科学版)》 CAS 2010年第3期17-19,共3页 Journal of Qingdao University(Natural Science Edition)
关键词 曲面 联树 可定向嵌入 亏格 surface joint tree orientable embedding genus distribution
  • 相关文献

参考文献9

  • 1Furst M L,Gross J L,Statman R.Genus distribution for two classes of graphs[J].J.Combin.Theory B,1989(46):22-36.
  • 2Gross J L,Furst M L.A hierarchy for imbedding distribution invariants of a graph[J].J.Graph Theory,1987(11):205-220.
  • 3Gross J L,Klein E W,Rieper R G.On the average genus of a graph[J].Graphs Combin.,1993(9):153-162.
  • 4Gross J L,Robbins D P,Tucker T W.Genus distribution for bouquets of circles[J].J.Comb.Theory B,1989(47):292-306.
  • 5李立峰,刘彦佩.一类三正则图的嵌入亏格分布[J].北京交通大学学报,2004,28(6):39-42. 被引量:6
  • 6Liu Y P.Embeddability in Graphs[M].Boston:Academic Publisher,1995.
  • 7万良霞,刘彦佩.一类新图类的可定向嵌入的亏格分布[J].北京交通大学学报,2005,29(6):65-68. 被引量:4
  • 8Shao Z L,Liu Y P.Genus distributions of the orientable embeddings for two types of graphs[J].Australas.J.Combin.,2008(41):205-217.
  • 9赵喜梅,刘彦佩.类树图的亏格多项式问题[J].北方交通大学学报,2004,28(3):7-11. 被引量:5

二级参考文献13

  • 1Jonathan L G, David P R, Thomas W T. Genus Distributions for Bouquets of Circles[J]. J. Combinatorial Theory B, 1989,47:292 - 306.
  • 2Merrick L F, Jonathan L G, Richard S. Genus Distributions for Two Classes of Graphs [J]. J. CombinatorialTheory B, 1989,46:22- 36.
  • 3Jonathan L G, David P R, Thomas W T. Genus Distributions for Bouquets of Circles[J]. J.Combinatorial Theory B, 1989,47:292-306.
  • 4Merrick L F, Jonathan L G, Richard S. Genus Distributions for Two Classes of Graphs[J]. J.Combinatorial Theory B, 1989,46:22-36.
  • 5Tesar E H.Genus Distribution of Ringel Ladders[J].Discrete Math,2000,216:235-252.
  • 6Gross J L,Robbins D P,Tucker T W.Genus Distributions for Bouquets of Circles[J].J.Combin.Theory(B),1989,47:292-306.
  • 7Wan L X,Liu Y P.Onentable Embedding Distributions by Genus for Certain Type of Non-Planar Graphs[J].Accepted by Ars Combinatoria(to-be Publish).
  • 8Chen J,Gross J L,Rieper R G.Overlap Matrices and Total Imbedding Distributions[J].Discrete Math,1994,128:73-94.
  • 9Liu Y P.Embeddability in Graphs[M].Dordrecht/Boston/London:Kluwer Academic Publisher,1995.
  • 10Gross J L,Furst M L.Hierarchy of Imbedding Distribution Invariants of A Grahp[J].J.Graph Theory,1987,11:205-220.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部