期刊文献+

一类Duffing-Van der Pol方程的混沌 被引量:1

Chaos in Duffing-Van der Pol Equation
下载PDF
导出
摘要 研究了带线性恢复力和外力激励的Duffing-Van der Pol方程,该系统由未扰动系统经拟周期扰动而得.应用动力系统的分支理论,Melnikov方法,二阶平均方法和混沌理论,得到该系统的平均系统产生混沌的准则,数值模拟验证理论结果正确. In this paper,a class of Duffing-Van der Pol equation with linear restoring and external excitations is investigated.The equation is deduced from unperturbed system under quasi-periodic perturbation.By applying bifurcation theory,Melnikov methods and second-order averaging method and chaos theories,the criterion of existence of chaos in averaged system are obtained,and numerical simulations show the consistence with the theoretical analysis.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2010年第3期22-27,共6页 Natural Science Journal of Xiangtan University
关键词 Duffing-Van der Pol系统 MELNIKOV方法 平均方法 混沌 Duffing-Van der Pol equation Melnikov methods second-order averaging methods bifurcations chaos
  • 相关文献

参考文献10

  • 1KAO Y H,WANG C S. Analog study of bifurcation structures in a Van der Pol oscillator with a nonlinear restoring force[J]. Phys Rev E, 1993, 48:2 514--2 520.
  • 2PARLITZ U. LAUTERBORN W. Period-doubling cascades and Peril's staircases of the Driven Van der Pot oscillator[J]. Phys Rev A, 1987, 36:1 482--1 434.
  • 3LIANG Y N S. Bifurcation in the noise Duffing-Van der Pol equation[M]. Springer, New York: Stochastic Dynamics, 1999:49-- 70.
  • 4NAWACHIVAGA N S,SOWERS R B, VEDULA L. Non-standard reduction of noise Duffing-Van der Pol equation[J-. Dyn Syst, 2001, 16(3): 223--245.
  • 5KAKAMENI F M M,BOWVNG S,TCHAWOUA C,et al. Strange attractors an chaos control in a Duffing-Van der oscillator with two external periodic forces[J]. J Sound Viber, 2004, 227: 783--799.
  • 6LAKSHMANAN M,MURALI M. Chaos in nonlinear oscillations[J]. World Scientific, 1996.
  • 7LEUNG A Y T,ZHANG Q L. Complex normal form for strongly non-linear vibration systems exemplified by Duffing-Van der Pol equation[J].J Sound Viber, 1998, 213(5): 907--914.
  • 8RAJASIKAR S,PARTHASARATHY S,LAKSHMANAN M. Prediction of horseshoe chaos in BVP and DVP oscillators [J]. Chaos, Solitons and Fractals, 1992, 2: 271--280.
  • 9KAPITANIAK T,STEEB W H. Transition to chaos in a generalized Van der Pol's equation. Sound and Vibration[J]. 1990, 143 (1): 167--170.
  • 10YAGASAKI K. Homoclinic tangles, phase locking, and chaos in a two frequency perturbation of Duffingrs equation[J]. J Nonlinear Sci, 1999, 9: 131--148.

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部