期刊文献+

模拟电路免疫记忆网络故障诊断方法 被引量:3

Fault Diagnosis Method for Analog Electronic Circuits Based on Immune Memory Network Theory
下载PDF
导出
摘要 提出了一种基于免疫记忆网络理论与k近邻算法的模拟电路故障诊断方法.首先,利用免疫记忆网络寻找各故障空间的最佳记忆抗体.在免疫记忆网络中根据浓度来选择记忆抗体,以促进记忆抗体在各故障空间的均匀分布.利用克隆和超级变异机制来保证抗体多样性,再利用浓度和期望值对抗体进行促进和抑制,以避免早熟现象的产生;然后,根据所得到的各故障空间的最佳记忆抗体,使用改进的阈值k近邻算法对抗原进行故障分类;最后,以带通滤波器为诊断实例,利用实际电路测试数据和仿真数据作为测试样本进行故障诊断性能评估;实验结果证明该故障诊断方法具有较高的故障诊断率. A method of analog circuit fault diagnosis based on immune memory network theory and k nearest neighbor algorithm is proposed.First,immune memory network is used to search the best memory antibody in fault space.In order to equally distribute the memory antibodies in fault space,the memory antibodies in immune memory network are chosen according to concentration.The mechanism of clone and hyper-variation are used to maintain the diversity of antibody,and methods including stimulating and suppressing antibody by concentration and expectation are applied to avoiding immaturity convergence.Second,an improved threshold KNN(k nearest neighbor) algorithm is used to classify the antigen based on the set of best memory antibody in fault space.At last,the band-pass filter is taken as an example,both of data from real circuit and data from software simulation are provided as testing samples to evaluate the diagnosis performance.The experimental results prove that the proposed method for analog circuit fault diagnosis an increase the diagnosis precision.
出处 《信息与控制》 CSCD 北大核心 2010年第5期574-580,共7页 Information and Control
基金 国家自然科学基金资助项目(60871009 60501022) 航空科学基金资助项目(2009ZD52045)
关键词 模拟电路 智能故障诊断 免疫记忆网络 K近邻算法 analog circuit intelligent fault diagnosis immune memory network k nearest neighbor algorithm
  • 相关文献

参考文献16

  • 1Li F, Woo P Y. The invariance of node-voltage sensitivity sequence and its application in a unified fault detection dictionary method[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, 46( 10): 1222-1227.
  • 2Wang P, Yang S Y. Soft fault test and diagnosis for analog circuits[C]//IEEE International Symposium on Circuits and Systems. Piscataway, NJ, USA: IEEE, 2005: 2188-2191.
  • 3汪鹏,杨士元.电压增量的线性相关性及在电路测试中的应用[J].清华大学学报(自然科学版),2007,47(7):1245-1248. 被引量:17
  • 4Tadeusiewicz M, Halgas S. Multiple fault diagnosis in analogue circuits[C]//European Conference on Circuit Theory and Design. Piscataway, NJ, USA: IEEE, 2005: 205-208.
  • 5Miura Y, Kato J. Fault diagnosis of analog circuits based on adaptive test and output characteristics[C]//21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. Piscataway, NJ, USA: IEEE, 2006: 410-418.
  • 6Yuan H Y, Chen G J, Shi S B, et al. Research on fault diagnosis in analog circuit based on wavelet-neural netnet [C]//6th World Congress on Intelligent Control and Automation. Piscataway, NJ, USA: IEEE, 2006: 2659-2662.
  • 7崔江,王友仁,刘权.基于高阶谱与支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2007,27(10):62-66. 被引量:40
  • 8de Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251.
  • 9Campelo F, Guimaraes F G, Igarashi H. Multi-objective optimization using compromise programming and an immune algorithm[J]. IEEE Transactions on Magnetics, 2008, 44(6): 982- 985.
  • 10钟将,吴中福,吴开贵,欧灵.基于人工免疫网络的动态聚类算法[J].电子学报,2004,32(8):1268-1272. 被引量:24

二级参考文献64

共引文献107

同被引文献25

  • 1杨永强,田华安,潘艳.基于改进BP算法的凝给水系统故障诊断神经网络的分析与训练[J].舰船科学技术,2005,27(z1):70-72. 被引量:3
  • 2杨汀平.电子装备维修技术及应用[M].北京:国防工业出版社,2006:1-4.
  • 3National Instruments. Measuremenl ant[ automation cala- log[G]//Austin : NI, 2007 : 50-58.
  • 4Lynch J P. An overview of wireless structural health monitoring for civil structures[J]. Philos Transact A Math Phys Eng Sci, 2007, 365(1851): 345-372.
  • 5Worden K, Farrar C R, Manson G, et al. The fundamental axioms of structural health monitoring[J]. Physical and Engineering Sciences, 2007, 463(2082): 1639-1664.
  • 6Deng J Y, Mao Z Y, Luo Y H. Pattern recognizing algorithm based on artificial immune network[J]. Journal of South China University of Technology: Natural Science, 2008, 36(1): 99-104.
  • 7Dasgupta D, Yu S, Nino F. Recent advances in artificial immune systems: Models and applications[J]. Applied Soft Computing, 2011, 11(2): 1574-1587.
  • 8dos Anjos Lima F P, Chavarette F R, dos Santos e Souza A, et al. Artificial immune systems with negative selection applied to health monitoring of aeronautical structures[J]. Advanced Materials Research, 2013, 871(1): 283-289.
  • 9Chen B, Zang C Z. Artifical immune pattern recognition for damage detection in structure health monitoring sensor networks[C]//Proceedings of the SPIE. Bellingham, WA, USA: SPIE, 2009: 72930k.
  • 10Moncayo H, Perhinschi M G, Davis J. Aircraft failure detection and identification over an extended flight envelope using an artificial immune system[J]. Aeronautical Journal, 2011, 115(1163): 43-55.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部