期刊文献+

动态FOCPA学习系统设计及在机器人运动平衡控制中的应用

Design of Dynamic FOCPA Learning System and Its Application to Robot Motion Balance Control
下载PDF
导出
摘要 针对仿生自主学习系统的自组织和泛化能力问题,基于Skinner操作条件反射原理和模糊聚类算法设计了动态FOCPA(fuzzy operant conditioning probabilistic automaton)仿生自主学习系统.动态FOCPA学习系统不仅具有仿生的自学习和自组织能力,而且提高了学习的精度和速度.其在仅能获得环境微弱反馈信息的前提下,首先采用在线聚类的方法实现对输入空间的灵活划分,以确保映射规则的数目是最经济的;然后以取向值为评价信号,采用OC学习算法,在线自主学习输入状态到输出操作行为的最佳映射,并加入一个高斯噪声项对映射结果进行实时优化.此外,动态FOCPA学习系统还利用信息熵的评价能力,来验证自身的自学习和自组织能力.理论上分析了设计的OC学习算法的收敛性;通过对两轮柔性直立式机器人姿态平衡控制和速度控制的实验分析,验证了动态FOCPA学习系统的有效性. Aiming at the ability of self-organization and generalization of bionic autonomous learning system,this paper constructs a dynamic fuzzy operant conditioning probabilistic automaton(FOCPA) bionic autonomous learning system based on Skinner operant conditioning(OC) theory and fuzzy clustering algorithm.The dynamic FOCPA learning system not only has bionic self-learning and self-organizing ability,but also can improve the learning speed and precision of learning system. Under the learning environment where only weak feedback information can be obtained,the FOCPA learning system firstly adopts online clustering algorithm to flexibly divide the input space to ensure that the number of mapping rules is the most economical.And then the learning system takes orientation value as evaluation signal and adopts the designed OC learning algorithm to autonomously learn the optimal mapping online from input states to output operant action,and a Gaussian noise term is added for optimizing the mapping result in real time.Moreover,by using the evaluating ability of information entropy, the self-learning and self-organizing ability is verified.The convergence of OC learning algorithm is proved from theory,and the further experiments on posture balancing control and velocity control of two-wheeled flexible upright robot prove the validity of dynamic FOCPA learning system.
出处 《信息与控制》 CSCD 北大核心 2010年第5期662-672,共11页 Information and Control
基金 国家自然科学基金资助项目(60774077) 国家863计划资助项目(2007AA04Z226) 北京市教委重点科技项目(KZ200810005002)
关键词 操作条件反射 模糊聚类 仿生自主学习系统 信息熵 姿态平衡控制 速度控制 operant conditioning fuzzy clustering bionic autonomous learning system information entropy posture-balanced control velocity control
  • 相关文献

参考文献10

  • 1Yilddirim S. Design of adaptive robot control system using recurrent neural network[J]. Journal of Intelligent & Robotic Systems, 2005, 44(3): 247-261.
  • 2Floreano D, Mondada E Evolutionary neuro-controller for autonomous mobile robots[J]. Neural Networks, 1998, 11(7/8): 1461-1478.
  • 3Skinner B E Two types of conditioned reflex and a pseudo type[J]. Journal of General Psychology, 1935, 1(12): 66-77.
  • 4Skinner B E The behavior of organisms: An experimental analysis[M]. New York, NJ, USA: Appleton-Century-Crofts, 1938.
  • 5Touretzky D S, Saksida L M. Operant conditioning in Skinnerbots[J]. Adaptive Behavior, 1997, 5(3/4): 219-247.
  • 6Touretzky D S, Daw N D, Tim-Thompson E J. Combining configured and TD learning on a robot[C]//Proceedings of the 2nd International Conference on Development and Learning. Piscataway, NJ, USA: IEEE, 2002: 47-52.
  • 7Tira-Thornpson E J, Halelamien N S, Wales J J, et al. Cognitive primitives for mobile robots[R]. Menlo Park, CA,USA: AAAI, 2004.
  • 8Touretzky D S, Tira-Thompson E J. Tekkotsu: A framework for AIBO cognitive robotics[C]//Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference. Menlo Park, CA,USA: AAAI, 2005: 1741-1742.
  • 9蒋宗礼,姜守旭.形式语青与自动机理论[M].北京:清华大学出版社,2007.
  • 10Juang C E Combination of online clustering and Q-value based GA for reinforcement fuzzy system design[J]. IEEE Transactions on Fuzzy System, 2004, 13(3): 289-302.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部