期刊文献+

基于Boosting算法的Pegasis路由协议在无线传感器网络中的应用 被引量:1

A novel method for wireless sensor network based on boosting algorithm
下载PDF
导出
摘要 一种基于Boosting算法的新无线传感器网络节点数据处理方法在文章中被提出,以提高使用Pegasis路由协议的无线传感器网络目标辩识率并降低系统能耗。文章对无线传感器网络中从簇头到汇聚节点的数据处理过程进行了重新设计,在簇头使用数据融合技术以减少数据信息冗余和系统能耗,在汇聚节点采用Gentle Boosting算法提高信息准确度并实现最优决策簇的选取。基于Boosting算法的数据处理方法在保持Pegasis路由协议优点基础上,在系统辩识率与系统能耗两者之间寻找到一个较为理想的平衡点。最后实验结果显示,与传统方法相比文章中的数据处理方法在提高辩识率与降低系统能耗方面拥有更好的性能。 In order to improve the performance of identification rate and reduce consumption of system energy,a novel data process method of wireless sensor network was proposed in this paper.The data process,which was from the cluster node to sink in wireless sensor network,has been redesigned in this paper.The data fusion technology was used in the cluster node for reducing both data redundancy and system energy consumption,and the gentle boosting algorithm was employed to improve the accuracy of information and choose the optimal decision cluster.The experimental results prove that the method of this paper have the superior performances between improving the identification rate and reducing system energy consumption compared to the traditions.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2010年第5期98-101,108,共5页 Journal of North China Electric Power University:Natural Science Edition
关键词 无线传感器网络 Pegasis路由协议 BOOSTING算法 数据融合 wireless sensor network Pegasis Protocol Boosting algorithm data fusion
  • 相关文献

参考文献1

二级参考文献5

  • 1Dasgupta K,Kalpakis K,Namjoshi P.Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks[J].Computer Networks, 2003,42(6) : 697-716.
  • 2Al-Karaki J N,UI-Mustafa R,Kamal A E.Data aggregation in wireless sensor networks-exact and approximate algorithms[C]//Proceedings of IEEE Workshop on High Performance Switching and Routing (HPSR),2004:241-245.
  • 3Intanagonwiwat C,Govinda R,Estrin D.Directed diffusion:a scalable and robust communication paradigm for sensor networks[C]//Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking,2000:56-67.
  • 4Krishnamachari B,Estrin D,Wieker S.The impact of data aggregation in wireless sensor networks[C]//Proc of the 22nd Int'l Conf on Distributed Computing Systems Workshops.Vienna:IEEE Computer Society, 2002: 575-578.
  • 5Kim Hyun-sook,Han Ki-jtm.A power efficient routing protocol based on balanced tree in wireless sensor networks[C]//First International Conference on Distributed Frameworks for Multimedia Applications(DFMA' 05 ), Feb 2005 : 138-143.

共引文献5

同被引文献9

  • 1倪明选,李明禄,薛广涛.无线传感网络的基础理论及关键技术研究[A]//中国计算机科学技术发展报告2007一庆祝“973”计划实施十周年[C].北京:清华大学出版社,2008:384-413.
  • 2Mao G, Fidan B. Localization Algorithms and strategies for wireless sensor networks [ M]. New York: Informa- tion Science Reference, 2009.
  • 3Shang Y, Ruml W, Zhang Y, et al. Localization from mere connectivity [ C ] //Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing. New York: ACM Press, 2003: 201 - 212.
  • 4Niculescu D, Nath B. Ad hoc positioning system (APS) using AoA [ C] //Proc of IEEE INFOCOM. San Francisco: IEEE Computer and Communications Societies, 2003 : 1734 - 1743.
  • 5Tian S, Zhang X, Wang X, et al. A Selective Anchor Node Localization Algorithm for wireless Sensor Net- works [ C] //International Conference on Convergence Information Technology. Washington D. C. , USA: IEEE Computer Society, 2007 : 358 - 362.
  • 6Jolliffe I. Principle Component Analysis, Second Edi- tion [ M]. New York: Springer-Verlag, 2002.
  • 7Wibowo A, Yamamoto Y. A note on kernel principal component regression [ J]. Computational Mathematics and Modeling, 2012, 23 (3): 350-367.
  • 8Yang W, Sun C, Yang J, et al. Face recognition using kernel UDP [ J]. Neural Process Letter, 2011, 34: 177 - 192.
  • 9Wibowo A. Nonlinear Predictions in Regression Models Based on Kernel Method [ D]. Tsukuba: University of Tsukuba, 2009.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部