期刊文献+

Halo轨道间转移的显式制导方法研究 被引量:1

An Explicit Guidance Strategy in Halo-to-Halo Transfers
下载PDF
导出
摘要 将显式制导方法应用于地月系统L1平动点Halo轨道间的转移问题,用以克服动力学建模误差.通过等时间间隔计算到达目标点的需要速度,得到当前速度与需要速度的矢量差,称为速度增益,其模即为控制冲量.需要速度通过应用Sukhanov-Prado方法求解三体Lambert问题获得.采用圆限制性三体模型(CR3BP)设计标称轨道和进行制导计算,双圆模型(BCM)作为考虑太阳引力的摄动模型进行仿真.结果表明,所提出的方法针对模型误差简单有效、计算速度较快并且所需能耗小. An explicit guidance strategy is developed in order to compensate for the perturbations in a real model or a simulation model. The main idea is to add control at equally spaced time points according to the calculation of the required velocity,which is the key point of the method. The required velocity is computed by solving a three-body Lambert problem (3BLP). The presented method is applied to the Earth-Moon L1 Halo-to-Halo transfer problem where the nominal orbit is obtained from CR3BP,and the simulation is performed taking the bicircular model (BCM) as perturbation model including the solar gravity. It can be easily extended to other systems and transfer types,as well as various dynamics models. Results show that the approach can successfully maintain control of the vehicle and a small amount of propellant are required.
出处 《空间控制技术与应用》 2010年第5期50-53,共4页 Aerospace Control and Application
基金 国家自然科学基金(10702078)资助项目
关键词 显式制导 需要速度 三体Lambert问题 Halo轨道间转移 BCM explicit guidance required velocity three-body Lambert problem Halo orbit transfer BCM
  • 相关文献

参考文献6

  • 1Hiday-Johnston L A, Howell K C. Impulsive time-free transfers between Halo orbits [J]. Celestial Mechanics and Dynamical Astronomy, 1996, 64(4) : 281-303.
  • 2Serban R. Halo orbit mission correction maneuvers using optimal control [J]. Automatica, 2002, 38(4): 571-583.
  • 3Gerard G, Manuel M, Jsep J M. Trajectory correction manoeuvres in the transfer to libration point orbits [J]. Acta Astronautica, 2005, 56(7) : 652-669.
  • 4Franco B Z. Assessment of mission design including utilization of libration points and weak stability boundaries [R]. 18147/04/NL/MV.
  • 5Alexander S, Antonio F B, Prado A. Lambert problem solution in the Hill model of motion [J]. Celestial Mechanics and Dynamical Astronomy, 2004, 90 (3-4) : 331-354.
  • 6Ross S D. Cylindrical manifolds and tube dynamics in the restricted three body problem [D]. California: California Institute of Technology, 2004.

同被引文献15

  • 1任远,崔平远,栾恩杰.基于不变流形的小推力Halo轨道转移方法研究[J].宇航学报,2007,28(5):1113-1118. 被引量:8
  • 2Koon W S, Lo M W, Marsden J E, et al. Dynamical system, the three-body problem and space mission design [ M ]. Springer, Heidelberg, 2006.
  • 3Howell K, Kakoi M. Transfers between the Earth-Moon and Sun- Earth systems using manifolds and transit orbits [ J ]. Acta. Astronautica, 2005, 56: 652- 669.
  • 4Gomez G, Jorba A, Masdemont J, et al. Study of the transfer between halo orbits[ J]. Aeta Astronautica, 1998, 43 (9 - 10) : 493 - 520.
  • 5Peng H J, Zhao J, Gao Q, et al. Nonlinear optimal control of the continuous low-thrust transfer between Halo orbits[ C ]. The 3rdInternational Symposium on Systems and Control in Aeronautics and Astronautics, China, 2010 : 616 - 620.
  • 6Gao Y. Linear feedback guidance for low-thrust many-revolution earth-orbit transfers [ J ]. Journal of Spacecraft and Rockets, 2009, 46(6) : 1320 - 1325.
  • 7Tian B L, Zong Q. Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method [ J ]. Acta Astronautica, 2011,68(7 -8) : 1176 -1184.
  • 8Lu P. Regulation about time-varying trajectories precision entry guidance illustrated [ J ]. Journal of Guidance, Control, and Dynanfics, 1999, 22(6) : 784 -790.
  • 9Ohtsuka T. Quasi-newton-type continuation method for nonlinear receding horizon control[ J ]. Journal of Guidance, Control, and Dynamics, 2002, 25 (4) : 685 - 692.
  • 10Kwon W H, Pearson A E. A modified quadratic cost problem and feedback stabilization of a linear system [ J ]. IEEE Transactions on Automatic Control, 1977, 22(5) : 838 - 842.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部