期刊文献+

脉冲存放食饵连续捕获捕食者阶段结构数学模型 被引量:2

Continuous Harvesting on Predator Mathematical Model with Impulsive Stocking and Stage Structure
下载PDF
导出
摘要 根据生物资源管理的实际,改进了原有捕食者-食饵模型,研究了一个连续收获捕食者与脉冲存放食饵的阶段结构时滞捕食-食饵模型,得到了捕食者灭绝周期解全局吸引和系统持久的充分条件.结论说明了脉冲存放食饵对系统的持久起到了重要作用,并且为生物资源管理中的捕食-食饵系统的开发提供了策略基础. A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator are studied.According to the living resources management,the predator-prey model is improved,the sufficient condition that guarantee the global attractivity of predator-exterminate periodic solution and permanence of the system is obtained.The results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system.
出处 《北华大学学报(自然科学版)》 CAS 2010年第5期385-390,共6页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金资助项目(10872118)
关键词 阶段结构 脉冲存放 连续收获 全局吸引 持久 stage-structured impulsive stocking continuous harvesting global attractivity permanence
  • 相关文献

参考文献11

  • 1S A Gourley,Y Kuang. A Stage Structured Predator-prey Model and Its Dependence on Through-stage Delay and Death Rate[ J ]. J Math Biol,200g ,49 : 188-200.
  • 2Meng X, Jiao J, Chen L. Nonlinear Analysis:The Dynamics of an Age Predator-prey Model with Disturbing Pulse and Time Delays [J]. Real World Applications,2008,9 ( 2 ) :547-561.
  • 3Xinzhu MENG,Lansun CHEN.A STAGE-STRUCTURED SI ECO-EPIDEMIOLOGICAL MODEL WITH TIME DELAY AND IMPULSIVE CONTROLLING[J].Journal of Systems Science & Complexity,2008,21(3):427-440. 被引量:5
  • 4Nieto J J, Rodriguez-Lopez R. Periodic Boundary Value Problems for Non-Lipschitzian Impulsive Functional Differential Equations [ J ]. J Math Anal Appl, 2006,31 ( 8 ) :593-610.
  • 5A Hastings. Global Stability in Two Species System[ J ]. J Math Biol, 1978,5:399-403.
  • 6JIAO Jian-jun, PANG Guo-ping, CHEN Lansun,et al. A Delayed Stage-structured Predator Prey Model with Impulsive Stocking on Prey and Continuous Harvesting on Predator [ J ]. Applied Mathematics and Computation ,2008,195 (1) :316-325.
  • 7Wang Wendi, Chen Lansun. A Predator-prey System with Stage Structure for Predator [ J ]. Comput Math Appl, 1997,33 (8) : 83-91.
  • 8SONGXinyu,CHENLansun.OPTIMAL HARVESTING POLICY AND STABILITY FOR SINGLE-SPECIES GROWTH MODEL WITH STAGE STRUCTURE[J].Journal of Systems Science & Complexity,2002,15(2):194-201. 被引量:10
  • 9DONG Ling-zhen,CHEN Lan-sun, SUN Li-hua. Extinction and Permanence of the Predator-prey System with Stocking of Prey and Harvesting of Predator Impulsively [ J]. Math Methods Appl Sci,2006,29(4) :415-425.
  • 10Wang W, Mulone G, Salemi F, et al. Permanence and Stability of a Stage-structured Predator-prey Model [ J ]. J Math Anal Appl,2001,262 (2) :499-528.

二级参考文献42

  • 1V. M. Stern, Economic thresholds, Ann. Rev. Entomol, 1973, 18(1): 259-280.
  • 2J. van Lenteren, Integrated pest management in protected crops, in Integrated Pest Management (ed. by D. Dent), Chapman & Hall, London, 1995.
  • 3J. van Lenteren and J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Ent., 1998, 33(1): 239-250.
  • 4J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661.
  • 5J. Lu, G. Chen, D. Cheng, and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, International Journal of Bifurcation and Chaos, 2002, 12(12): 2917-2926.
  • 6L. Falcon, Use of bacteria for microbial control of insetts, Microbial control of Insects and Mites (ed. by H. D. Burges and N. W. Hussey), Academic Press, New York, 1971.
  • 7H. Burges and N. Hussey, Microbial Control of Insects and Mites, Academic Press, New York, 1971.
  • 8Y. Tanada, Epizootiology of insect diseases, Biological Control of Insect Pests and Weeds (ed. by P. DeBach), Chapman & Hall, London, 1964.
  • 9L. Falcon, Problems associated with the use of arthropod viruses in pest control, Annu. Rev. Entomol., 1976, 21(2): 305-324.
  • 10R. Anderson and R. May, Regulation and stability of host-parasite population interactions, I. Regulatory processes, J. Anita. Ecol., 1978, 47(1): 219-247.

共引文献12

同被引文献12

  • 1Wang Kai.Periodic solutions to a delayed predator-prey model with Hassell-Varley type functional response[J].Nonlinear Analysis:Real World Application,2011,12(1):137-145.
  • 2Zhang Guo-dong,Shen Yi,Chen Bo-shan.Positive periodic solutions in a nonselective harvesting predator-prey model with multiple delays[J].Journal of Mathematical Analysis and Applications,2012,395(1):298-306.
  • 3Wu Run-xin,Li Lin,Permance and global attractively of discrete predator-prey system with Hassell-Varley Type functional response[J].Discrete Dynamics in Nature and Society,2009,2009:1-17.
  • 4Kar T K,Ghorai A.Dynamic behaviour of a delayed predator-prey model with harvesting[J].Applied Mathematics and Computation,2011,217(22):9085-9 104.
  • 5Chakraborty K,Jana S,Kar T K.Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting[J].Applied Mathematics and Computation,2012,218 (18):9 271-9 290.
  • 6Gaines R E,Mawhin J L.Coincidence degree and nonlinear differential equation[M].Berlin:Springer-Verlag,1977.
  • 7Wang W D, Chen L S. A predator-prey system with stage structure for predator [J]. Computers Math Applic, 1997,33(8): 83-91.
  • 8内藤敏机, 原惟行, 日野义之, 等. 时滞微分方程-泛函微分方程引论[M]. 马万彪, 陆征一, 译. 北京: 科学出版社, 2013: 20-50.
  • 9焦建军,陈兰荪,罗桂烈.食饵具脉冲扰动与捕食者具连续收获的时滞捕食-食饵模型[J].应用数学,2008,21(1):67-74. 被引量:3
  • 10刘秀湘,黄立宏.离散Hassell-Varley型功能性反应系统的正周期解[J].数学的实践与认识,2009,39(12):115-120. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部