期刊文献+

一类微分方程三个对称正解的存在定理

Theorem about Estance of Triple Symmetric Positive Solutions for A Class of Differential Equation
下载PDF
导出
摘要 利用Legget-Williams定理及不等式技巧,研究了一类积分边值条件的微分方程正解的存在性,得到其存在三解的充分条件,丰富了以往文献的一些结论。 By use of the Legget-Williams theorem and inequality techniques,the existence of positive solutions for a class differential equation with integral boundary value condition was studied.Sufficient condition to guarantee the existence of triple positive solutions of this problem was established.The result generalizes many known results.
作者 刘勤凤
出处 《安徽理工大学学报(自然科学版)》 CAS 2010年第3期76-78,共3页 Journal of Anhui University of Science and Technology:Natural Science
关键词 正解 积分边值条件 Legget-Williams定理 positive solutions integral boundary value condition Legget-Williams theorem
  • 相关文献

参考文献11

  • 1LEGGET R W,WILLIAMS L R.Multiple positive fixed points of nonlinear operators on ordered Banach spaces[J].Indiana university Math.J,1979,28:673-688.
  • 2C P GUPTA.A generalized multi-point boundary value problem for second order ordinary differential equations[J].Appl.Math.Comput.1998,89:133-146.
  • 3R I AVERY,J HENDERSON.Three symmetric positive solutions for a second-order boundary value problem[J].Appl.Math.Lett.2000,13:1-7.
  • 4J R GRAEF,L KONG.Positive solutions for third order semipositone boundary value problems[J].Appl.Math.Lett.2009,22:1154-1160.
  • 5Y LUO,Z LUO.Symmetric positive solutions for nonlinear boundary value problems with-Laplacian operator[J].Appl.Math.Lett.2010,23:657-664.doi:10.1016/j.aml.2010.01.027.
  • 6X ZHANG,M FENG,W GE.Symmetric positive solutions for p-Laplacian fourth-order differential equations with integral boundary conditions[J].J.Comput.Appl.Math.2008,222:561-573.
  • 7LINGJU KONG.Second order singular boundary value problems with integral boundary conditions[J].Nonlinear Anal.2010,72:2 628-2 638.
  • 8D JI,W GE.Multiple positive solutions for some p-Laplacian boundary value problems[J].Appl.Math.Comput.2007,187(2):1 315-1 325.
  • 9B F LIU,J H ZHANG.The existence of positive solutions for some nonlinear equation systems[J].J.Math.Anal.Appl.2006,324:970-981.
  • 10H WANG.On the number of positive solutions of nonlinear systems[J].J.Math.Anal.Appl.2003,281:287-306.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部