期刊文献+

加筋砂土边坡渐进性变形破坏的数值分析 被引量:4

NUMERICAL ANALYSIS OF PROGRESSIVE DEFORMATION AND FAILURE OF REINFORCED SAND SLOPES
下载PDF
导出
摘要 利用非线性弹塑性有限元方法对加筋砂土边坡的模型试验从加载开始到破坏的全过程进行数值分析,并与无加筋砂土边坡的状况进行比较。为研究边坡的面板效应,对带面板的加筋砂土边坡的变形破坏进行弹塑性有限元分析。在有限元分析中,砂土的本构关系选用应变硬化软化弹塑性模型,该模型可以考虑砂土的应变局部化、强度的各向异性以及应力水平相关等特性。结果表明,建议的非线性弹塑性有限元分析可以较好地模拟加筋砂土边坡的局部应力–应变分布以及剪切带发生、发展状况,有助于定量化地把握加筋砂土边坡的渐进性变形破坏特点以及加筋条带的加固机制和边坡的面板效应。 The results from the laboratory model test on reinforced sand slope were simulated numerically by the nonlinear elastoplastic finite element method(FEM) considering the strain localization;and they were compared with the results from the unreinforced sand slope. Then,the elastoplastic finite element analysis of a reinforced sand slope with facing plates was also performed numerically to understand the effect of facing by adding the facing plates into the finite element model for reinforced sand slope. In the finite element analysis,strain localization(or shear banding),strain-hardening,strain-softening,strength anisotropy and pressure dependency were considered for sandy soil. It was found that the presented finite element analysis could properly simulate the local stress-strain distribution and development of shear bands within the slopes,which could better understand the progressive failure characteristics of reinforced sand slopes,reinforcing mechanism of strips and the facing effect.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2010年第A02期3905-3915,共11页 Chinese Journal of Rock Mechanics and Engineering
基金 教育部新世纪优秀人才支持计划基金项目(NCET–06–0378) 国家自然科学基金资助项目(50679056 40972176) 上海市曙光计划基金项目(05SG25) 上海市重点学科建设项目(B308)
关键词 土力学 加筋砂土边坡 有限元方法 渐进性变形破坏 加固机制 面板效应 soil mechanics reinforced sand slope finite element method(FEM) progressive deformation and failure reinforcing mechanism facing effect
  • 相关文献

参考文献3

二级参考文献30

  • 1彭芳乐,龙冈文夫.加筋砂土地基中加筋宽板效果的数值解析研究(英文)[J].岩石力学与工程学报,2005,24(2):268-277. 被引量:6
  • 2Zienkiewicz O C, Taylor R L, Too J M. Reduced integration technique in general analysis of plates and shells[J]. Int J Numer Methods Engng, 1971, 3:275-290.
  • 3Flanagan D P, Belytschko T. An uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. Int J Numer Methods Engng., 1981, 17:679 - 706.
  • 4Siddiquee M S A, Tanaka T, Tatsuoka E Tracing the equilibrium path by dynamic relaxation in materially non-linear problems[J].International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(11): 749 - 767.
  • 5Akinmusuur J O, Akinbolade J O. Stability of loaded footing on reinforced soil[J]. Journal of Geotechnical Engineering, ASCE, 1981,107(6): 819 - 827.
  • 6Binquent J, Lee K L. Bearing capacity analysis of reinforced slabs[J]. Journal of Geotechnical Engineering, ASCE, 1975, 101(GTI2): 1 257-1276.
  • 7Huang C C, Tatsuoka E Bearing capacity of reinforced horizontal sandy ground[J]. Geotextiles and Geomembranes, 1990, 9(51--82):236 - 267.
  • 8Siddiquee M S A, Tanaka T, Tatsuoka F, et al. Numerical simulation of bearing capacity characteristics of strip footing on sand[J]. Soils and Foundations, 2000, 39(4): 93- 109.
  • 9Peng F L, Kotake N, Tatsuoka F, et al. Plane strain compression behavior of geo-grid-reinforced sand and its numerical analysis[J].Soils and Foundations, 2000, 40(3): 55 - 74.
  • 10Kotake N, Tatsuoka F, Tanaka T, et al. FEM simulation of the bearing capacity of level reinforced sand ground subjected to footing load[J].Geosynthetics International, 2002, 8(6): 501-549.

共引文献21

同被引文献56

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部