期刊文献+

胞内共生菌Cardinium的研究进展 被引量:7

Research progress of endosymbiont Cardinium
下载PDF
导出
摘要 Cardinium是一类近几年才被人们发现和关注的细胞内共生细菌,属于拟杆菌门(Bacteroidetes)的一个独立分支,同沃尔巴克氏体(Wolbachia)一样可以通过细胞质遗传。虽然这类寄生菌在节肢动物中的分布没有Wolbachia广泛,但是许多研究表明这类寄生菌同样具有诱导寄主生殖异常现象的能力。这些生殖异常现象主要包括胞质不亲和、诱导孤雌生殖、雌性化。另外,Cardinium除了对寄主具有生殖调控作用以外还能影响寄主的适合度。由于这些现象的发现,使得Cardinium也同Wolbachia一样受到越来越多研究学者的关注。本文系统地总结了近年来这类细菌的研究情况,主要包括Cardinium的形态特征、在节肢动物中的分布、对寄主的生殖调控作用、传播规律、系统发育等方面。最后,文章简要讨论了研究Cardinium这类胞内共生菌的价值和意义。 Cardinium is a recently discovered maternally transmitted bacterial endosymbiont in many arthropods. Phylogentic analysis shows that it belongs to Bacteroidetes. Although the distribution of Cardinium in arthropod wasn't as wide as that of Wolbachia, more and more research reveals that Cardinium can also induce abnormal phenotypes of its host's reproduction,including cytoplasmic incompatibility,parthenogenesis and feminization. Furthermore,it also influences the fitness of its host in addition to manipulating the reproduction of its hosts. Due to these discoveries,Cardinium has been drawing more and more attention of scholars just like Wolbachia. This paper reviews and analyses the development of Cardinium in recent years in several aspects: morphology, distribution,reproductive manipulation,phylogeny and so on. Finally,we discuss the potential value and significance of this endosymbiont for biological control.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2010年第5期1-11,共11页 Journal of Nanjing Agricultural University
基金 国家公益性农业行业科技项目(07-057) 国家自然科学基金项目(30871635)
关键词 CARDINIUM 分布 生殖调控作用 系统发育 Cardinium distribution reproductive manipulation phylogeny
  • 相关文献

参考文献63

  • 1Munson M A, Baumann P, Kinsey M G. Buchnera gen. nov. and Buchnera aaphidicola sp. nov. , a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids [J]. Intl J Syst Bacteriol, 1991, 41 (4) : 566 -568.
  • 2Aksoy S. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov. , taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies [J]. Intl J Syst Bacteriol, 1995, 45 (4) : 848 -851.
  • 3Sauer C, Stackebrandt E, Gadau J, et al. Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. [ J]. Intl J Syst Evol Microbiol, 2000, 50:1877 -1886.
  • 4Thao M L, Moran N A, Abbot P, et al. Cospeciation of psyllids and their primary prokaryotic endosymbionts [ J ]. Appl Environ Microbiol, 2000, 66 (7): 2898-2905.
  • 5Thao M L, Gullan P J, Baumann P. Secondary (3,-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts [J]. Appl Environ Microbiol, 2002, 68 (7) : 3190 -3197.
  • 6Lefevre C, Charles H, Vallier A, et al. Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement [J]. Mol Bin| Evol, 2004, 21 (6) : 965 -973.
  • 7Thao M L, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts [ J]. Appl Environ Microbiol, 2004, 70 (6): 3401-3406.
  • 8Gherna R L, Werren J H, Weisburg W, et al. Arsenophonus nasoniae gen. nov. , sp. nov. , the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis [J]. Intl J Syst Bacteriol, 1991, 41 (4) : 563 -565.
  • 9Dale C, Maudlin I. Sodalis gen. nov. and Sodalis glossinidiu gen. nov. , a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans [J]. Intl J Syst Bacteriol, 1999, 49:267 -275.
  • 10Moran N A, Russell J A, Koga R, et al. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects [J]. Appl Environ Microbiol, 2005, 71 (6): 3302-3310.

二级参考文献25

  • 1苗慧,洪晓月,谢霖,薛晓峰.朱砂叶螨体内感染的Wolbachia的wsp基因序列测定与分析[J].昆虫学报,2004,47(6):738-743. 被引量:18
  • 2Charlat S, Calmet C, Andrieu O, Mercot H, 2005. Exploring the evolution of Wolbachia compatibility types: a simulation approach. Genetics, 170 : 495 - 507.
  • 3Charlat S, Calmet C, Mercot H, 2001. On the mod resc model and the evolution of Wolbachia compatibility types. Genetics, 159:1415 - 1422.
  • 4Chigira A, Miura K, 2005. Detection of the ' Candidatus Cardinium' bacteria from the haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. Experimental and Applied Acarology, 37 : 107 - 116.
  • 5Duron O, Hurst GDD, Hornett EA, Josling JA, Engelstadter J, 2008. High incidence of the maternally inherited bacterium Cardinium in spiders. Molecular Ecology, 17 : 1427 - 1437.
  • 6Engelstadter J, Charlat S, Pomiankowski A, Hurst GDD, evolution of cytoplasmic incompatibility types: segregation, inbreeding and ontbreeding. Genetics, -2611, 2006. The integrating 172: 2601.
  • 7Enigl M, Schausberger P, 2007. Incidence of the cndosymbionts Wolbachia, Gardinium and Spiroplasma in phytoseiid mites and associated prey. Experimental and Applied Acarology, 42:75 -85.
  • 8Gotoh T, Noda H, Fujita T, Iwadate K, Higo Y, Saito S, Ohtsuka S, 2005. Wolbachia and nuclear-nuclear interactions contribute to reproductive incompatibility in the spider mite Panonychus mori ( Acari : Tetranychidae). Heredity, 94 : 237 - 246.
  • 9Gotoh T, Noda H, Hang XY, 2003. Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity, 91:208 -216.
  • 10Gotoh T, Noda H, Ito S, 2007. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity, 98:13 -20.

共引文献10

同被引文献94

  • 1祝树德,陆自强,杭杉保,徐海.温度对褐飞虱种群调控作用研究[J].华东昆虫学报,1994,3(1):53-59. 被引量:26
  • 2苗慧,洪晓月,谢霖,薛晓峰.朱砂叶螨体内感染的Wolbachia的wsp基因序列测定与分析[J].昆虫学报,2004,47(6):738-743. 被引量:18
  • 3苗慧,洪晓月,谢霖,薛晓峰,张春玲.二斑叶螨体内感染的Wolbachia的wsp基因序列测定与分析[J].昆虫学报,2006,49(1):146-153. 被引量:13
  • 4兰景华.柑橘叶片主要害虫的防治[J].四川农业科技,2007(3):47-49. 被引量:10
  • 5Bandi C, McCall JW, Genchi C, Corona S,Venco L, Sacchi L, 1999.Effects of tetracycline on the filarial worms Brugia pahangi andDirofilaria immitis and their bacterial endosymbionts Wolbachia.Intl. J. Parasitol.,29: 357 - 364.
  • 6Biliske JA, Batista PD, Grant CL, Harris HL, 2011. The bacteriophageWORiC is the active phage element in wRi of Drosophila simulansand represents a conserved class of WO phages. BMC Microbiol.,11: 251.
  • 7Bordenstein SR, Bordenstein SR, 2011. Temperature affects the tripartiteinteractions between bacteriophage WO, Wolbachia, andcytoplasmic incompatibility. PLoS ONE, 6(12) : e29106.
  • 8Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wemegreen JJ, 2006.The tripartite associations between bacteriophage, Wolbachia, andarthropods. PLoS Pathog.,2(5) : e43.
  • 9Bourtzis K, Nirgianaki A, Markakis G,Savakis C,1996. Wolbachiainfection and cytoplasmic incompatibility in Drosophila species.Genetics, 144: 1063 - 1073.
  • 10Braig HR, Guzman H, Tesh RB, 0,Neill SL, 1994. Replacement of thenatural Wolbachia symbiont of Drosophila simulans with a mosquitocounterpart. Nature, 367 : 453 -455.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部