摘要
讨论了有序Banach空间E中的非线性二阶微分方程-u″(t)+au(t)=f(t,u(t)),t∈R非平凡ω-周期解的存在性,其中a>0,f:R×E→E连续.在较一般的非紧性侧度条件与序条件下用凝聚映射的不动点指数理论获得了该问题非平凡ω-周期解的存在性与多重性结果。
The existence of nontrivial periodic solutions was discussed for nonlinear second order ordinary differential equations in an ordered Banach space E, -u(t) + an(t) = f(t, u(t)), t ∈ R where a 〉 0 and f:R× E → E is continuous. Under more general conditions of noncompactness measure and semi-ordering, the existence and multiplicity results of nontrivial w-periodic solutions were obtained by employing the fixed point index theory of condensing mapping.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第5期79-83,88,共6页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(10871160)
甘肃省自然科学基金项目(0710RJZA103)
西北师范大学科技创新工程项目(NWNU-KJCXGC-3-47)