期刊文献+

有序Banach空间二阶常微方程的非平凡周期解 被引量:4

Nontrivial periodic solutions to second order ordinary differential equations in ordered Banach spaces
下载PDF
导出
摘要 讨论了有序Banach空间E中的非线性二阶微分方程-u″(t)+au(t)=f(t,u(t)),t∈R非平凡ω-周期解的存在性,其中a>0,f:R×E→E连续.在较一般的非紧性侧度条件与序条件下用凝聚映射的不动点指数理论获得了该问题非平凡ω-周期解的存在性与多重性结果。 The existence of nontrivial periodic solutions was discussed for nonlinear second order ordinary differential equations in an ordered Banach space E, -u(t) + an(t) = f(t, u(t)), t ∈ R where a 〉 0 and f:R× E → E is continuous. Under more general conditions of noncompactness measure and semi-ordering, the existence and multiplicity results of nontrivial w-periodic solutions were obtained by employing the fixed point index theory of condensing mapping.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期79-83,88,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(10871160) 甘肃省自然科学基金项目(0710RJZA103) 西北师范大学科技创新工程项目(NWNU-KJCXGC-3-47)
关键词 BANACH空间常微分方程 闭凸锥 凝聚映射 不动点指数 周期解 ODEs in Banach space closed convex cone condensing mapping fixed point index periodic solution
  • 相关文献

参考文献9

二级参考文献64

共引文献152

同被引文献19

  • 1LIYONGXIANG.POSITIVE PERIODIC SOLUTIONS OF FIRST AND SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS[J].Chinese Annals of Mathematics,Series B,2004,25(3):413-420. 被引量:17
  • 2宋福民.Banach空间中两点边值问题的解[J].数学年刊(A辑),1993,1(6):692-697. 被引量:39
  • 3李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 4周友明.Banach空间中二阶微分方程的周期边值问题[J].应用数学学报,2006,29(3):436-444. 被引量:11
  • 5Bai Zhanbin, Lu Haishen. Positive solutions for boundary value problems of nonlinear fractional differential equation [J]. J Math Anal Appl,2005,311 (2) :495 - 505.
  • 6Jiang Daqing, Yuan Chengjun. The positive properties of the Green function for Dirichlet-type boundary value problems of non- linear fractional differential equation and its application [J]. Nonlinear Anal,2010,72 ( 2 ) :710 - 719.
  • 7Zhang Shuqin. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic J Differential Equations, 2006,2006 (36) : 1 - 12.
  • 8Zhang Shuqin, Su Xinwei. The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order[ J ]. Comput Math Appl,2011,62 (3) :1269 -1274.
  • 9Lin Legang, Liu Xiping, Fang Haiqin. Method of upper and lower solutions for fractional differential equations[ J]. Electronic J Differential Equations,2012,2012(100) :1 - 13.
  • 10Guo Dajun, Lakshmikantham V. Multiple solutions of two-point boundary value problems of ordinary differential equations in Ba- nach spaces[J]. J Math Anal Appl,1988,129(1) : 211 -222.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部