期刊文献+

行满秩Toeplitz型矩阵Moore-Penrose逆的快速算法 被引量:1

Fast algorithm for Moore-Penrose inverse of Toeplitz-type matrices
下载PDF
导出
摘要 通过构造对称分块矩阵给出了秩为m的m×n阶Toeplitz型矩阵Moore-Penrose逆的快速算法。该算法计算复杂度为O(mn)+O(m2),而由T(TTTT)-1直接求解所需运算量为O(m2n)+O(m3)。数值算例表明了该快速算法的有效性。 A new fast algorithm for Moore-Penrose inverse of Toeplitz-type matrices with full row rank is presented by forming a symmetric block matrix.The computational complexity of this algorithm is O(mn)+O(m2),while solving T+ from TT(TTT)-1 needs O(m2n)+O(m3).Examples show the efficiency of the fast algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第30期1-4,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.70901063 西北工业大学基础研究基金No.G9KY102202~~
关键词 Toeplitz型矩阵 MOORE-PENROSE逆 对称化 快速算法 Toeplitz-type matrix; Moore-Penrose inverse; symmetric; fast algorithm;
  • 相关文献

参考文献8

  • 1Wiener N.Extrapolation, interpolation and smoothing of stationary time series[M].New York:Wiley,1949.
  • 2Thench W F.An algorithm for the inversion of finite Toeplitz matriees[J].J Soc Indust Appl Math,1964,12:515-522.
  • 3Zohar S.Toeplitz matrix inversion: The algorithm of W F Theneh[J].J Ass Comput Mach, 1969,16:592-601.
  • 4Gohberg I C, Krupnik N Ya.A formula for the inversion of finite Toeplitz matrices(in Russian)[J].Mat Issled, 1972, 12(7): 272-283.
  • 5Heining G, Rost K.Algebra methods for Toeplitz-like matrices and operators[M].Berlin:Akademie-Verlag, 1984.
  • 6Ben-Artzi A, Shalom T.On inversion of Toeplitz and close to Toeplitz matrices[J].Linear Algebra Appl, 1986,75: 173-192.
  • 7Gutknecht M H,Hochbruck M.The stability of inversion formulas for Toeplitz matrices[J].Linear Algebra Appl, 1995(223/224): 307-324.
  • 8安晓虹,徐仲,叶正麟.Toeplitz方程组极小范数最小二乘解的快速算法[J].数学的实践与认识,2008,38(2):40-46. 被引量:4

二级参考文献6

  • 1Pan C T, Plemmons R J. Least square modifications with inverse factorizationt Parallel implications[J]. Comput Appl Math, 1989,27 : 109-127.
  • 2Levinson Appendix N. In: Wiener N. Extrapolation, Interpolation and Smoothing of Stationary Time Secies [M]. New Yorkt Wiley, 1949.
  • 3Durbin J. The fitting of time-series models[J]. Rev Inst Statist, 1960,28: 233-243.
  • 4Bareiss E H. Numerical solution of linear equation with Toeplitz and vector Toeplitz matrices[J]. Numer Math, 1969,13:404-424.
  • 5Akaike H. Block Toeplitz matrix inversion[J]. SIAM J Appl Math, 1973,24 (2): 234-241.
  • 6Zohar S. The solution of a Toeplitz set of linear equation[J]. J Ass Comput Math, 1974,21: 272-276.

共引文献3

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部