期刊文献+

利用局部特征的子空间车辆识别算法 被引量:11

Subspace vehicle recognition algorithm using local features
下载PDF
导出
摘要 利用改进的主成分分析(Principal Component Analysis,PCA)方法,通过研究不同的车辆特征(如全局特征、各种局部特征)对静态图像车辆识别效果的影响,提出了一种新的静态图像车辆识别算法。该算法可有效降低光照和背景噪声对识别的影响,实现对存在部分遮挡的车辆检测。实验结果表明,该算法具有良好的鲁棒性和车辆识别率。 Utilize the method of principal components analysis to research the influence to the recognition result caused by different vehicle features(such as global feature,various kinds of local features),a new vehicle recognition algorithm is proposed.The proposed algorithm can reduce the influence of lighting conditions and background noise effectively and detect partially occluded vehicles accurately.Testing results demonstrate that by using the proposed algorithm the vehicle detection can be realized with a strong robusticity and high identification ratio.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第30期156-158,180,共4页 Computer Engineering and Applications
基金 安徽省教育厅自然科学基金资助No.KJ2008B123 No.KJ2009B011~~
关键词 静态图像 车辆识别 主成分分析 局部特征 遮挡检测 static image; vehicle recognition; principal component analysis; local feature; occlusion detection;
  • 相关文献

参考文献9

  • 1Kyo S, Koga T, Sakurai K, et al.A robust vehicle detecting and tracking system for wet weather conditions using the I MAP-VISION image processing board[C]//IEEE/IEEJ/JSA I International Conference on Intelligent Transportation Systems, 1999.
  • 2Wen Xue-zhi, Zhao Hong, Wang Nan, et al.A rear-vehicle detection system for static images based on monocular vision[C]//9th International Conference on Control, Automation, Robotics and Vision, ICARCV' 06,2006.
  • 3Gao Lei,Li Chao,Fang Ting, et al.Vehicle detection based on color and edge information[C]//Sth International Conference on Image Analysis and Recognition,ICIAR 2008,2008.
  • 4Constantine P,Papageorgiou C,Poggio T.A trainable object detection system:Car detection in static images[R].A I Memo 1673, MIT Artificial Intelligence Laboratory, 1999.
  • 5吴珺文,张学工.应用小波变换和PCA进行车辆的静态图像检测[J].清华大学学报(自然科学版),2002,42(11):1560-1564. 被引量:4
  • 6徐东彬,刘昌平,黄磊.融合边缘和角点特征的实时车辆检测技术[J].小型微型计算机系统,2008,29(6):1142-1148. 被引量:6
  • 7Wang C C R,Lien J J J.Automatic vehicle detection using local features--A statistical approach[J].IEEE Transactions on Intelligent Transportation Systems, 2008,9 ( 1 ) : 83-96.
  • 8Duda R O,Hart P E,Stork D G.模式分类[M].李宏东,译.北京:机械工业出版社,2006:94.
  • 9Truk M, Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3( 1 ) :71-86.

二级参考文献23

  • 1边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.12.
  • 2Koerner R J,Bienhoff M G,Henderson M C.Inductive loop detector system[R].US Patent 3,943,339,1976.
  • 3AHS Lai,NHC Yung.Vehicle-type identification through automated virtual loop assignment and block-based direction-biased motion estimation[J].Intelligent Transportation Systems,IEEE Transactions on,2000,1(2):86-97.
  • 4Park S,Kim T,Kang S,et al.A novel signal processing technique for vehicle detection radar[C].IEEE MTT-S Int'l Microwave Symp.Digest,Philadelphia,Pennsylvania,2003,607-610.
  • 5Wang C,Thorpe C,Suppe A.Ladar-based detection and tracking of moving objects from a ground vehicle at high speeds[C].Proceedings IEEE Intelligent Vehicles Symp.Ohio,USA.2003,416-421.
  • 6Du J,Barth M.Establishing dynamic virtual roadway loop detectors with lane-level vehicle trajectory data[C].Proceedings of Intelligent Transportation Systems,San Francisco,USA,2005,38-43.
  • 7Shaoman Z,Yizhi S,Bingji L,et al.Method for vehicle speed detection based on virtual loop motion estimation[J].Huazhong University of Science and Technology Nature,2004,32(1):76-78.
  • 8Harris C,Stephens M.A combined corner and edge detector[C].Proceedings of the Fourth Alvey Vision Conference,Manchester,1988,147-151.
  • 9Smith S M,Brady M.SUSAN-a new approach to low level image processing[J].International Journal of Computer Vision,1997,23(1):45-78.
  • 10Lowe D G.Object recognition from local.scale-invariant features[C].Proceedings of International Conference on Computer Vision,Kerkyra,1999,1150-1157.

共引文献7

同被引文献82

  • 1宋丹,徐蔚鸿.基于模糊理论的车型识别[J].计算机技术与发展,2006,16(3):47-49. 被引量:12
  • 2ZHANG Wei,Jonathan WU Q M, YANG Xiao-kang, et al. Multilevel Framework to Detect and Handle Vehicle Occlusion[J]. IEEE Transaction on Intelligent Transportation Sys- tems,2008,9(3):161-174.
  • 3Goo J, Aggarwal J K, Gokmen M. Tracking and Segmenta- tion of Highway Vehicles in Cluttered and Crowded Scenes [C]//Proc of IEEE Workshop on Applications of ComputerVision, 2008 : 1-6.
  • 4HUANG Chung-Lin, LIAO Wen Chieh. A Vision-Based Ve- hicle Identification System[J]. IEEE Pattern Recognition, 2004,4(8) :364.
  • 5Clement Chun Cheong Pang,William Wai Leung Lam, Nelson Hon Ching Yung. A Method for Vehicle Count in the Pres ence of Multiple-Vehicle Occlusions in Traffic Images [J].IEEE Transactions on Intelligent Transportation Systems, 2007,8(9) :441- 449.
  • 6Clement Chun Cheong Pang, Tan Zhigang, Nelson Hon Ch ing Yung. A Methodology for Resolving Severely OccludedVehicles Based on Component Based Multi-Resolution Rela tional Graph Matching[C]//Proc of International Conferenceon Machine Vision, 2007:141-146.
  • 7SONG Xue-feng, Ram Nevatia. Detection and Tracking of Moving Vehicles in Crowded Scenes [C] // Proc of IEEEWorkshop on Motion and Video Computing,2007:1- 4.
  • 8SONG Xue feng,Ram Nevatia. A Model Based Vehicle Seg- mentation Method for Tracking[J]. IEEE Computer Vi sion, 2005, 2(12) :1124-1132.
  • 9Kanhere N K, Pundlik S J ,Birchfield S T. Vehicle Segmen- tation and Tracking from a Low-Angle Off Axis Camera [J]. IEEE Computer Vision and Pattern Recognition,2005, 2(7):1152-1158.
  • 10Na Fan. Object Classification and Occlusion Handling Using Quadratic Feature Correlation Model and Neural Networks [J]. International Journal of Pattern Recognition and Arti-ficial Intelligence (IJPRAI), 2011, 25(3):287- 298.

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部