摘要
利用改进的主成分分析(Principal Component Analysis,PCA)方法,通过研究不同的车辆特征(如全局特征、各种局部特征)对静态图像车辆识别效果的影响,提出了一种新的静态图像车辆识别算法。该算法可有效降低光照和背景噪声对识别的影响,实现对存在部分遮挡的车辆检测。实验结果表明,该算法具有良好的鲁棒性和车辆识别率。
Utilize the method of principal components analysis to research the influence to the recognition result caused by different vehicle features(such as global feature,various kinds of local features),a new vehicle recognition algorithm is proposed.The proposed algorithm can reduce the influence of lighting conditions and background noise effectively and detect partially occluded vehicles accurately.Testing results demonstrate that by using the proposed algorithm the vehicle detection can be realized with a strong robusticity and high identification ratio.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第30期156-158,180,共4页
Computer Engineering and Applications
基金
安徽省教育厅自然科学基金资助No.KJ2008B123
No.KJ2009B011~~
关键词
静态图像
车辆识别
主成分分析
局部特征
遮挡检测
static image; vehicle recognition; principal component analysis; local feature; occlusion detection;