期刊文献+

最大熵和最小交叉熵综合的交互式图像分割 被引量:11

Interactive image segmentation based on combining maximum entropy and minimum cross entropy
下载PDF
导出
摘要 在图像分割中,使用某一种分割方法并不是总有效。最大熵和最小交叉熵阈值化方法是目前常用的两种图像分割方法,但在某些分割应用场合失效。针对此问题,提出基于最大熵和最小交叉熵综合的交互式图像分割方法。首先,利用一种简单的算法将前两种方法有机结合产生一种既满足最大熵原则,又满足最小交叉熵原则的新分割方法,然后通过人机交互,在这三种阈值方法中选择最好的图像分割。仿真实验结果表明,提出的方法不仅分割效果好,算法的普适性增强,而且更实用。 The segmentation approach on one criterion only does not work well for a lot of images.The thresholding methods based on maximum entropy and minimum cross entropy are used widely today in image segmentation,but they often fail to segment some images,so an interactive image segmentation method based on combining maximum entropy and minimum cross entropy is presented in this paper.Firstly it gets the third thresholding method by combining maximum entropy and minimum cross entropy using a simple algorithm so that the optimal threshold value can not only satisfy the former but also meet the latter,then the optimal segmentation is chosen by users in the three methods.Experimental results show that the proposed method can not only get better segmentation performance and better generalization,but is also more practical.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第30期191-194,共4页 Computer Engineering and Applications
基金 河南省重点科技攻关项目(No.092102210017) 河南省教育厅科技攻关项目(No.2007520024 No.2008B520021)
关键词 交互式图像分割 最小交叉熵 最大熵 阈值 interactive image segmentation; Minimum Cross Entropy(MCE); Maximum Entropy(ME); threshold;
  • 相关文献

参考文献2

二级参考文献13

  • 1薛景浩,清华大学学报,1999年,20卷,1期,47页
  • 2薛景浩,中国图象图形学报,1999年,4卷,2期,110页
  • 3zhang Y J,Pattern Recognition,1996年,29卷,8期,1335页
  • 4Lee S U,Computer Vision Graphics Image Processing,1990年,52期,171页
  • 5Rother C, Kolmogorov V, and Blake A. GrabCut - interactive foreground extraction using iterated graph cuts. A CM Trans. Graphics, Los Angeles, 2004, 23(3): 309-314.
  • 6Boykov Y and Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. International Conference on Computer Vision, Vancouver, BC, Canada, 2001, 1: 105-112.
  • 7Malik J, Belongie S, Shi J, and Leung T. Textons, contours and regions: cue integration in image segmentation. International Conference on Computer Vision, Kerkyra, Corfu, Greece, 1999, 2: 918-925.
  • 8Leung T and Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 2001, 43(1): 29-44.
  • 9Varma M and Zisserman A. Unifying statistical texture classification frameworks. Image and Vision Computing, 2004, 22(14): 1175-1183.
  • 10Stan Z L. Markov Random Field Modeling in Image Analysis. Inc. Secaucus, N J, USA, Springer-Verlag New York, 2001, 18.

共引文献37

同被引文献159

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部