期刊文献+

在癌症识别中一种新颖的基因特征抽取算法 被引量:1

Novel method of gene features extraction in cancer recognition
下载PDF
导出
摘要 针对癌症样本类型存在的局部相关性,提出了一种新颖的基因特征抽取算法。利用基因表达谱中基因表达数据的空间映射,提取不同类型癌症的致癌因子,并构建癌症组的关联空间,在关联空间之上抽取分类基因特征。理论证明可以有效识别癌症模式,并在急性白血病数据集上进行实验,结果表明利用抽取的分类基因特征可以有效识别AML/ALL。 Using the cancerogenic factor's local correlation to a type of cancer,a novel method of gene features extraction is proposed.Using gene features transformation,the cancerogenic factors are extracted to different cancers and a relative space is built to the cancer,then the gene features are extracted for cancers with them.The cancer pattern is proved to can be recognized.The experiment is explored in the Leukemia dataset and Colon dataset,the results show that AML/ALL and to Tumor Colon Tissue(TCT)/normal Colon Tissue(NCT) are recognized effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第30期237-240,244,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60873184 国家博士后科学基金No.20100471790 湖南省自然科学基金No.07JJ5085~~
关键词 基因表达谱 基因特征抽取 癌症分类 gene expression profile; gene feature extraction; cancer recognition;
  • 相关文献

参考文献14

  • 1Kuramochi M, Karypis G.Gene classification using expression profiles:A feasibility study[J].Interaational Journal on Artificial Intelligence Tools, 2005,14(4) : 641-660.
  • 2李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 3Kasabov N.Evolving connectionist systems,methods and applications in bioinformatics,brain study and intelligent machines[M]. [S.l.] :Verlag Springer, 2002:112-125.
  • 4Golub T R, Slonim D K, Tamayo P, et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science, 1999,286: 531-537.
  • 5Veer L J V T,Dai H,Vijver M J V D, et al.Gene expression profiling predicts clinical outcome of breast cancer[J].Nature, 2002,415 : 530-536.
  • 6Cho S B, Won H H.Machine learning in DNA microarray analysis for cancer classification[C]//Proc of Bioinformatics 2003 First Asia-Pacific Bioinformatics Confcrence(APBC), 2003: 189-198.
  • 7Lu X G, Lin Y P, Yang X L, et al.Using most similarity tree based clustering to select the top most discriminating genes for cancer detection[C]//Proc of the 8th International Conference of Artificial Intelligence and Soft Computing(ICAISC), 2006: 931-940.
  • 8Goh L, Song Q, Kasabov N.A novel feature selection method to improve classification of gcnc expression data[C]//Proc of Bioinformatics 2004 Second Asia-Pacific Bioinformatics Conference(APBC), 2004:161-166.
  • 9Hu X, Yoo I.Cluster ensemble and its application in gene expression analysis[C]//Proc of the 2nd Asia-Pacific Bioinformatics Conference (APBC), 2004: 297-302.
  • 10Conde L,Mateos A,Herrero J, et al.Unsupervised reduction of the dimensionality followed by supervised learning with a perceptron improves the classification of conditions in DNA microarray gene expression data, neural networks for signal processing Ⅻ[M].New York:IEEE Press,2002:77-86.

二级参考文献27

  • 1T.R. Golub, D. K. Slonim, P. Tamayo, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439): 531 ~ 537.
  • 2J. Khan, J. S. Wei, M. Ringner, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 2001, 7(6): 673 ~679.
  • 3I. Guyon, J. Weston, S. Barnhill, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 2000, 46(13): 389~ 422.
  • 4R. Tibshirani, T. Hastie, B. Narasimhan, et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression.PNAS, 2002, 99(10): 6567~6572.
  • 5S. Theodoridis, K. Koutroumbas. Pattern Recognition (2nd edition). New York: Academic Press, 2003. 177~179.
  • 6V.N. Vapnik. Statistical Learning Theroy. New York: Wiley Interscience, 1998.
  • 7M. Dash, H. Liu. Feature selection for classification. Intelligent Data Analysis, 1997, 1(3): 131~156.
  • 8B. José, A. D. Bruce. Feature selection from huge feature sets.In: Proc. 8th Int'l Conf. Computer Vision ( ICCV' 01 ) . Los Alamitos: IEEE Computer Society Press, 2001. 159~ 165.
  • 9E.S. Lander. Array of hope. Nature Genetics, 1999, 21(Suppl): 3~4.
  • 10S. Ramaswamy, T. R. Golub. DNA microarrays in clinical oncology. Journal of Clinical Oncology, 2002, 20 ( 7 ): 1932 ~1941.

共引文献72

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部