期刊文献+

解一般约束优化问题的牛顿法的超线性收敛性 被引量:2

Superlinear Convergence of Newton Algorithm for General Constrained Optimization Problem
下载PDF
导出
摘要 文献[2]提出了基于F-B函数的解一般约束优化规划问题的牛顿算法,但仅给出了该算法的全局收敛性。在该算法的基础上,进一步证明了该算法的超线性收敛性。 Then Literature [ 2 ] proposed the Newton problem, but this paper has only proved the global foundation,we prove the superlinear convergence of algorithm with F-B function for general constraint optimization conve-rgence of the algorithm. With the help of this method's the algorithm to go a step further.
出处 《太原科技大学学报》 2010年第5期396-398,共3页 Journal of Taiyuan University of Science and Technology
关键词 一般约束优化问题 牛顿法 超线性收敛 :general constraint optimization, Newton method, superlinear convergence
  • 相关文献

参考文献3

二级参考文献10

  • 1桂胜华,贺向阳,王济生.弱互补函数的拉格朗日——牛顿法解不等式约束非线性规划问题[J].上海第二工业大学学报,2005,22(3):8-14. 被引量:1
  • 2桂胜华,张倩,邢丽,徐玲.弱互补函数的拉格朗日-拟牛顿法[J].上海第二工业大学学报,2005,22(5):21-27. 被引量:8
  • 3袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 4Panier E R, Tits A L and Herskovits J N. A QP-free, globally, locally superlinear convergent method for the inequality constrained optimization problems[J], sIAM J. Control Optim., 1988, 36:788-811.
  • 5Hock W and Schittkowski K. Test Example for Nonlinear Programming Codes, Lecture Notes in Econom and Math. Systems[M], Berlin: Springer-Verlag, 1981.
  • 6Pu D and Tian W. A class of Broyden Algorithms with revised search direction[J]. Asia- Pacific J. of Operation Research, 1997, 14:93--109.
  • 7Pu D and Tian W. Gallobally inexact generalized Newton methods for nonsmooth equation [J]. J.of Computational and Applied Mathematics,2002, 138: 37--49.
  • 8Pu D, Gui S and Tian W. A class of revised Broyden algorithms without exact.line search[J]. J, computational Mathematics. 2004. (22): 11--20.
  • 9Pu D and Zhang J. An inexact generalized Newton method for second order C-differentiable optimization[J]. J. of Computational and Applied Mathematics, 1998,93:107--122.
  • 10Qi H and Qi L. A New QP-free, globally V, locally superlinear convergent feasible method for the solution of inequality constrained optimization problems[J]. SIAM J. Optim., 2000,11: 113--132.

共引文献15

同被引文献20

  • 1桂胜华,张倩,邢丽,徐玲.弱互补函数的拉格朗日-拟牛顿法[J].上海第二工业大学学报,2005,22(5):21-27. 被引量:8
  • 2SUN C L, ZENG J C, PAN J S. An New Vector Particle Swarm Optimization for Constrained Optimization Problems [ J ]. Computational Sciences and Optimization, IEEE ,2009,5779:485-488.
  • 3SUN C L,ZENG J C, PAN J S. A Particle Swarm Optimization with Reserved Average Velocity for Linearly Constrained Optimization Problems [ C ]//International Symposium on Management Engineering ( ISME), 2009 , 3 : 543-547.
  • 4MARIA ANA, ROCHA A C. Feasibility and dominance rules in the electromagnetism-like algorithm for constrained global optimization [ C ]//Computational Science and Its Applications ( ICCSA), 2008 : 5073:768-783.
  • 5XIE L P, ZENG J C, CUI Z H. General Frameworkof Artificial Physics Optimization Algorithm [ C ]//Proceedings of 2009 World Congress on Nature and Biologically Inspired Computing, India,2009:1321-1326.
  • 6SPERAS W M,SPEARS D F, KERR W. An Overview of Physicomimetics [ C ]//Lecture Notes in Computer Science-State of the Art Series ,2005,3342:84-97.
  • 7XIE L P, ZENG J C. The Performance Analysis of Artificial Physics Optimization Algorithm Driven by Different Virtual Forces [J]. ICIC-EL,2010,4 ( 1 ) :239-244.
  • 8XIE L P,ZENG J C, CUI Z H. On mass effects to artificial physics optimization algorithm for global optimization problems [ J ]. International Journal of Innovative Computing and Applications, 2010,2 ( 2 ) : 69 -76.
  • 9XIE L P, ZENG J C. An Extended Artificial Physics Optimization Algorithm For Global Optimization Problem. Proceedings of Fourth International Conference on Innovative Computing [ C ]//Kaohsiung, Taiwan, Information and Control (ICICIC 2009 ), 2009.
  • 10XIE L P, ZENG J C, CUI Z H. The Vector Model of Artificial Physics Optimization Algorithm for Global Optimization Problems [ J ]. Intelligent data engineering and automated learning,2009,5788 : 610-617.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部