期刊文献+

基于闭包关系的信息系统约简研究

Study of Relation Reduction Based on Closure of Information Systems
下载PDF
导出
摘要 用拓扑学中闭包这个最基本的概念来刻画协调决策信息系统的属性约简和不协调决策信息系统关于上近似的约简。在此基础上,很自然地提出一个二元关系相对于一族二元关系的闭包约简的概念,并且定义一个辨识矩阵来刻画闭包约简,给出闭包协调集的判定定理与约简方法。这些结果是协调信息系统的属性约简和不协调决策信息系统中关于上近似约简理论的自然推广。 In this paper,the closure in topology was used to recognize attribute reduction in consistent information systems and possible reduction in inconsistent information systems.Then,based on the theory of topology, we gave the definition of closure reduction in a family of general relationsnatuarally.Also,we defined a discernibility matrixto present judgement theorem for closure consistent set.
出处 《东莞理工学院学报》 2010年第5期28-31,共4页 Journal of Dongguan University of Technology
基金 国家自然科学基金资助项目(10671173 10571151) 福建省科技计划项目(2008F5066)
关键词 决策协调集 上近似协调集 一般二元关系 闭包 decision consistent set possible approximation consistent set binary relation closure
  • 相关文献

参考文献14

  • 1Pawlak Z. Rough sets[J].lnternational Journal of Computer and Information Sciences,1982,11: 341-356.
  • 2Pawlak Z. Rough Sets.Theoretical Aspects of Reasoning about Data[M]. Boston: Kluwer Academic Publishers,1991.
  • 3Skowron A, Rauszer C.The discernibility matrices and functions in information systems[M].//Slowinski R.lntelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory.Kluwer Academic Publishers, Boston,1992:331-362.
  • 4Wiweger A. On topological rough sets[J].Bulletin of the Polish Academy of Sciences,1989,37(l-6):89-93.
  • 5Kondo M. On the structure of generalized rough sets[J].lnformation Sciences, 2006,176:589-600.
  • 6Lashin E F, Medhat T.Topological reduction of information systems[J].Chaos, Solitons and Fractals,2005,25:277-286.
  • 7Zhu W. Topological approaches to covering generalized rough sets[J].Information Sciences,2007,177:1499-1508.
  • 8黄兵,周献中,史迎春.基于一般二元关系的知识粗糙熵与粗集粗糙熵[J].系统工程理论与实践,2004,24(1):93-96. 被引量:35
  • 9Zakowski W. Approximation in the space[J].Demonstratio Mathematica, 1983,16:761-769.
  • 10Zhu W, Wang F Y.Reduction and axiom ization of covering generalized rough sets[J].Information Sciences,2003,152: 217-230.

二级参考文献2

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部