期刊文献+

不同接触电阻的气体扩散电极性能研究 被引量:1

Research on the performance of gas diffusion electrodes with different contact resistance
下载PDF
导出
摘要 在催化剂与泡沫镍基板之间,采取涂抹式和表面接触式两种方式制作了具有不同接触电阻的气体扩散电极,通过观察微观形貌从理论上说明两种电极的接触方式引起的放电效果区别;结合在锌空气动力电池中的放电实验,获得在同等实验条件下,电极催化剂与基板采取表面接触式比涂抹式制作方式产生的电池表观内阻值高0.05Ω,当放电电流密度值为106mA/cm2,放电电压值低0.09V。说明了气体扩散电极由于催化剂与基板接触方式不同引起的接触电阻变化对电池放电状态的影响及其影响程度。 Two kinds of gas diffusion electrodes with different contact resistance were made by designing two different contact modes between the catalyst and the nickel foam base plate,one mode was the smear technique and the other was the surface contact mode.By observing the microscopic pattern and the contact area theoretical calculation,the difference of the discharge effect caused by the contact mode was illustrated from the theoretical analysis point of view.In the discharge experiment of the electrodes in the zinc-air power battery,under the same test condition,by comparing the discharge polarization curves,the battery with the gas diffusion electrode whose contact mode of the catalyst and the nickel foam was smear technique was better.The D-value of the apparent internal resistance between the two batteries was 0.05 Ω,and at the same current density(106 mA/cm2),the D-value of the voltage was 0.09 V.The effect on the discharge of the battery by the contact resistance caused by the different contact mode between the catalyst and the nickel foam base plate was analyzed.
出处 《电池工业》 CAS 2010年第4期205-209,共5页 Chinese Battery Industry
基金 国家自然科学基金(10872193) 安徽农业大学引进人才基金资助(yj2008-6)
关键词 气体扩散电极 接触电阻 锌空气电池 表观内阻 比表面积 gas diffusion electrode contact resistance zinc-air power battery apparent internal resistance specific surface area
  • 相关文献

参考文献16

二级参考文献85

共引文献203

同被引文献17

  • 1樊金娟 张立军.小孔扩散的边缘效应[J].植物生理学通讯,1999,35(1):42-42.
  • 2DU X Z, YU J R, YI B L, et al. Performances of proton exchange membrane fuel cells with alternate membranes[J]. Phys Chem Phys, 2001, 43(15):3175-3179.
  • 3CAO Y L, YANG H X, AI X P, et al. The mechanism of oxygen reduction MnO2-catalyzed air cathode in alkaline solution[J]. Journal of Electroanalytical Chemistry, 2003, 557:127-134.
  • 4PASAOGULLARI U, WANG C Y. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2004, 151 (3):399-406.
  • 5VIADIMIR N, WANG H J. A review on air cathodes for zinc-air fuel cells[J]. J Power Sources, 2010, 195(5):1271-1291.
  • 6GULTEKIN S,GULZOW E,STEINHILBER G. Activation of nickelanodes for alkaline fuel cells[J]. Applied Surface Science, 2001, 179 (1/4):251-256.
  • 7CHAN L, WANG C Y. Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell[J]. Electrochimica Acta, 2004, 49(24):4149-4156.
  • 8ZHANG G Q, ZHANG X G, WANG Y G. A new air electrode based on carbon naotubes and Ag-MnO2 for metal air electrochemical cells [J]. Carbon, 2004, 42(15):3097-3102.
  • 9DOREEN T, ANDREAS Z. Electrochemical characterization of air electrodes based on La0.6Sr0.4CoO0.3 and carbon nanotubes[J]. J Power Sources, 2008, 183(1/2):590-594.
  • 10MAJA M, ORECCHIA C, STRANO M, et al. Effect of structure of the electrical performance of gas diffusion electrode for metal air batteries[J]. Electrochimica Acta, 2000, 46(2/3):423-432.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部