期刊文献+

多体系统动力学方程的无违约数值计算方法 被引量:3

Precise numerical solution for multi-body system's equations of motion based on algorithm without constraint violation
下载PDF
导出
摘要 多体系统动力学方程为3阶微分代数方程,已有的约束违约稳定法存在位移违约问题,数值仿真准确性和稳定性不足。本文将求解高阶微分代数方程的降阶理论、ε嵌入处理方式与隐式龙格库塔法相结合,提出了直接满足位移约束条件的多体系统动力学方程的无违约算法,避免了约束违约问题。该方法先将多体动力学方程转化为2阶微分代数方程,并与位移约束方程联立;再应用ε嵌入隐式龙格库塔法进行数值求解。应用两种方法分别对单摆机构进行数值仿真,结果表明本文的方法不仅能适应较大步长,且准确性和稳定性均优于约束违约稳定法。 The multi-body system's equations of motion belong to differential algebraic equation(DAE) of index-3.For the constraint violation,the accuracy and stabilization of the constraint violation stabilization method(CVSM)is rather inadequate.In this paper,incorporating the theory of reducing-order for DAE of high index,εembedding method and implicit Runge-Kutta method,aprecise algorithm without constraint violation is presented.Applying the method,the constraint violation could be avoided.Firstly,the equations of motion are converted into DAE with index-2 and the displacement constraint equation remains.Secondly,implicit Runge-Kutta method embeddedεis applied to solve the equation directly.Using the two methods,respectively,a single-pendulum system is simulated.The results show that our method has better computational precision and stabilization than CVSM,even using large-steps.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第5期942-947,共6页 Chinese Journal of Computational Mechanics
关键词 多体系统 动力学分析 微分代数方程 约束违约 隐式龙格库塔法 multi-body system dynamics analysis differential algebraic equation constraint violation implicit Runge-Kutta method
  • 相关文献

参考文献14

  • 1Flores P, Ambrosio J, et al. Kinematics and Dynamics of Multi-body Systems with Imperfect Joints [ M]. Berlin, Heidelberg & Springer-Verlag, 2008.
  • 2Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Comp. Math. in Appl. Mech. and Engineering, 1972,1 : 1-16.
  • 3Baumgarte J. A new method of stabilization for holonomic constraints[J]. Journal of Applied Mechanics, 1983,50: 869-870.
  • 4Chiou J C, Wu S D. Constraint violation stabilization using input-output feedback linearization in multi-body dynamic analysis[J]. Journal of Guidance, Control and Dynamics, 1998,21 (2):222-228.
  • 5付士慧,王琪.多体系统动力学方程违约修正的数值计算方法[J].计算力学学报,2007,24(1):44-49. 被引量:9
  • 6Ascher U M. On symmetric schemes and differentialalgebraic equations[J]. SIAM J. Sci. Stat. Com., 1989,10:937-949.
  • 7Brenan K E, Campbell S L, Petzold L R. Numerical solution of initial-value problems in differential-algebraic equations[J].Elsevier, New York, 1989.
  • 8Ascher U M, Petzold L R. Projected implicit Runge-Kutta methods for differential-algebraic equations [J]. SIAM Journal on Numerical Analysis, 1991, 28(4): 1097-1120.
  • 9Brasey V, Hairer E. Half-explicit Runge-Kutta methods for differential-algebraic systems of in-dex-2 [J]. SIAM Journal on Numerical Analysis, 1993,30 (2):538-552.
  • 10Ercan C. On the numerical solution of differenttial algebraic equations with index-2 [J]. Applied Mathematics and Computation, 2004,156(2): 541-550.

二级参考文献5

  • 1[1]BAUMGARTE J.Stabilization of constraints and integrals of motion in dynamical systems[J].Comp.Meth.in Appl Mech and Engineering,1972,1:1-16.
  • 2[3]BAUMGARTE J.A new method of stabilization for holonomic constraints[J].Journal of Applied Mechanics,1983,50:869-870.
  • 3[4]CHIOU J C,WU S D.Constraint violation stabilization using input-output feedback linearization in multibody dynamic analysis[J].Journal of Guidance,Control and Dynamics,1998,21(2):222-228.
  • 4[7]TSENG F C,MA Z D,HULBERT G M.Efficient numerical solution of constrained multibody dynamics systems[J].Comput Methods Appl Mech Engrg,2003,192:439-472.
  • 5[8]BAYO E,AVELLO A.Singularity-free augmented Lagrangian algorithms for constrained mutibody dynamics[J].Nonlinear Dynamics,1994,5:209-231.

共引文献8

同被引文献24

  • 1潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 2李大永,蒋劲茂,彭颖红,尹纪龙.辊弯成形过程仿真与参数优化[J].系统仿真学报,2007,19(4):893-896. 被引量:17
  • 3Udwadia F E.A new perspective on the tracking control of nonlinear structural and mechanical systems[J].Proceedings of the Royal Society,Series A:Mathematical,Physical and Engineering Sciences,2003,459(2035):1783-1800.
  • 4Braun D J,Goldfarb M.Eliminating constraint drift in the numerical simulation of constrained dynamical systems[J].Computer Methods in Applied Mechanics and Engineering,2009,198:3151-3160.
  • 5Baumgarte J.Stabilization of constraints and integrals of motion in dynamical systems[J].Computer Methods in Applied Mechanics and Engineering,1972,1(1):1-16.
  • 6Lin S T,Chen M W.A PID type constraint stabilization method for numerical integration of multibody systems[J].Journal of Computational and Nonlinear Dynamics,2011,6(10):44501-44506.
  • 7Braun D J,Goldfarb M.Simulation of constrained mechanical systems-part I:an equation of motion[J].Journal of Applied Mechanics,2012,79(4):410171-410178.
  • 8Blajer W.An orthonormal tangent space method for constrained multibody systems[J].Computer Methods in Applied Mechanics and Engineering,1995,121(1):45-57.
  • 9Blajer W,Schiehlen W,Schirm W.A projective criterion to the coordinate partitioning method for multibody dynamics[J].Archive of Applied Mechanics,1994,64(2):86-98.
  • 10Blajer W.Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems[J].Multibody System Dynamics,2002,7(3):265-284.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部