期刊文献+

基于光纤Bragg光栅和支持向量机的冲击损伤识别研究 被引量:4

Identification of impact damage based on FBG and SVM technology
下载PDF
导出
摘要 针对常用无损检测的局限性,基于光纤Bragg光栅传感器搭建了冲击损伤实时主动监测系统,结合支持向量机算法对碳纤维飞行器壁板进行了冲击损伤位置及程度的识别研究,并与传统的BP神经网络识别结果进行了对比。结果表明:支持向量机算法具有较好的函数回归能力,且该系统能实时有效地从冲击前后的信号中识别出冲击损伤的位置及程度,对冲击损伤识别具有较高的精度。 Aiming at the limitation of common non-destructive technology,an active real-time monitoring system based on fiber Bragg grating sensors was set up here-in.Support vector machine(SVM)was used to detect the impact damage for carbon fiber composite laminated plates,and compare the identified results with those using the traditional BP neural network.The study results showed that SVM possesses the better ability of regression and higher accuracy than the traditional BP neural network;furthermore,the monitoring system can identify the locations and level of impact damage effectively.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第10期53-55,156,共4页 Journal of Vibration and Shock
基金 国家高技术研究发展计划(863计划)(No.2007AA03Z117) 国家自然科学基金国际合作重大项目(No.50420120133) 江苏省自然科学基金项目(BK2008510)
关键词 光纤BRAGG光栅 支持向量机 冲击损伤 fiber Bragg grating(FBG) support vector machine(SVM) impact damage
  • 相关文献

参考文献7

  • 1Guemes J A, et al. Embedded fiber Bragg grating as local damage sensors for composite materials. Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems [ C ]. Proceedings of SPIE,2002 : 118 - 128.
  • 2Meltz G, et al. Overview of Fiber Grating based Sensors [ C ]. Proc SPIE 1996 ,2838:2-221.
  • 3Vapnik V N. The nature of statistical learning theory [ M ]. New York : Springer, 1995.
  • 4Nello C ,John S T. An introduction to support vector machines and other kernel - based learning methods [ M ]. Cambridge University Press, 2000.
  • 5Vapnik V N. Estimation of dependences based on empirical data. Berlin[M]. Berlin. Springer Verlag, 1982.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 7Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..

二级参考文献1

共引文献2432

同被引文献58

  • 1黄红梅,袁慎芳.基于FBG光谱特性的修补结构中裂纹扩展的研究[J].光电子.激光,2009,20(10):1290-1293. 被引量:6
  • 2Staszewski W J,Traynor S M R. Health monitoring of aerospace composite structures-Active and passive approach [J].Composites Science and Technology, 2009,69 (11/12) : 1678--1685.
  • 3Baker A, Dutton S, Kelly D. Composite Materials for Aircraft Structures. Second Edition[M] . Virginia.. American Institute for Aeronautics and Astronautics, 2004:1--3.
  • 4Holger S, Henrik R. Structural health monitoring: a contribution to the intelligent aircraft structure[C]//19th European Conference on NDT, Berlin, Germany, 2006.
  • 5Stefani A M. Review of Air Carriers'use of Aircraft Repair Station[R]. FAA Report Number AV--2003 047, 2003.
  • 6Bethel K, Catha S C B, et al. The Development and Validation of a High Strength, Self Monitoring, Composite Tight Fit Liner for Offshore Pipelines and Risers[C]//Fourth International Conference on Composite Materials for Offshore Operations, Houston, Texas, USA, 2005.
  • 7Yan Y J, et al. Development in vibration-based structural damage detection technique[J]. Mechanical Systems and Signal Processing. 2007,21 (5) : 2198-- 2211.
  • 8Stehmeier H, Speckman H, Bolten J. Comparative vacuum monitoring of fatigue cracking in aircraft structures [C]//2^nd European Workshop on SH M, Munich Germany, July,2004.
  • 9Wheatly, et al. Comparative vacuum monitoring as an alternate means of compliance[J]. Insite-Non Destructive Testing and Condition Monitoring,2005,47(3) : 153-- 156.
  • 10Weller P P,et al. Use of heat emitted by broken optic fibers..a new approach for damage detection in composites[J].Engineering Failure Analysis, 2005,2 (6): 860 - 874.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部