期刊文献+

最小不对称高密度小波基的构造及应用 被引量:1

Construction of least asymmetric higher density wavelet bases and its application
下载PDF
导出
摘要 具有2个生成元的高密度离散小波变换能实现间尺度分析,并具有近似平移不变性,因而很适合于信号降噪。针对现有高密度小波基对称性较差的问题,提出一种构造最小不对称高密度小波基的方法。该法通过在最大扁平线性相位FIR滤波器的所有可能因式分解结果中进行最优化选择,得到相位最接近线性的低通滤波器,进而求出2个小波滤波器,然后便能构造出最小不对称高密度小波。仿真试验表明,与原有小波相比,采用新小波可提高高密度离散小波变换的降噪性能。在滚动轴承故障振动信号降噪中的应用结果表明所构造的小波能有效地提取轴承故障特征。 The higher density discrete wavelet transformation with two generators can realize intermediate scales analysis,and is an approximate shift invariant,so that it is very suitable for signal denoising.Aiming at the bad symmetry of the current higher density wavelet bases,an approach for construction of least asymmetric higher density wavelet bases was proposed.The nearest linear-phase low-pass filter was chosen optimally from all the possible factorization results of the maximaum flat linear-phase(FIR)filter with the proposed method.Subsequently,the two wavelet filters were obtained.Then,the least asymmetric higher density wavelets could be constructed.Simulation experiments showed that using the new wavelets can improve the denoising performance of the higher density discrete wavelet transformation compared with the current wavelets.The application results in denoising a roller bearing fault vibration signal showed that the constructed wavelets can effectively extract the bearing fault characteristic from that signal.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第10期195-200,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(50905191 50875272) 长江学者和创新团队发展计划(IRT0763)资助项目
关键词 小波滤波器 对称 因式分解 非线性度 降噪 wavelet filter symmetry factorization nonlinearity denoising
  • 相关文献

参考文献14

  • 1秦毅,秦树人,毛永芳.连续小波变换快速带通滤波实现算法的研究[J].振动与冲击,2008,27(12):23-27. 被引量:7
  • 2唐炜,史忠科.时频域滤波及在飞机颤振试飞试验中的应用[J].振动与冲击,2006,25(4):46-49. 被引量:5
  • 3祝海龙,郭天佑,屈梁生.基于二进小波变换和软阈值改进的信号消噪[J].自动化学报,2004,30(2):199-206. 被引量:15
  • 4Donoho D L. De-noising by soft-thrsholding[J]. IEEE Trans. Information Theory, 1995, 41 (3) : 613 - 627.
  • 5Shensa M J. The discrete wavelet transform: wedding the a trous and Mallat algorithm[J]. IEEE Trans. Signal Processing, 1992, 40(10) : 2464 -2482.
  • 6Daubechies I, Han B, Ron A, et al. Framelets: MRA-based constructions of wavelet frames[J]. Appl. Comput. Harmon. Anal. , 2003, 14(1) : 1 -46.
  • 7Chui C K, He W, Stocklerckler J. Compactly supported tight and sibling frames with maximum vanishing moments [ J ]. Appl. Comput. Harmon. Anal, 2002, 13(3) :224-262.
  • 8Jiang Q T. Parameterizations of masks for tight affine frames with two symmetric/antisymmetrie generators [J]. Adv. Comput. Math,2003,18 : 247 - 268.
  • 9Han B, Mo Q. Symmetric MRA tight wavelet frames with three generators and high vanishing moments [ J ]. Appl. Comput. Harmon. Anal, 2005, 18(1): 67-93.
  • 10Abdelnour A F, Selesnick I W. Symmetric nearly shift-invariant tight frame wavelets[J]. IEEE Trans. Signal Processing, 2005, 53(1) : 231 -239.

二级参考文献39

共引文献23

同被引文献8

  • 1Donoho D L, Johnstone I M. Adapting to Unknown Smoothness via Wavelet Shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224.
  • 2Selesnick I W. The Double Density DWT[M]. Boston, USA: Kluwer Academic Publishers, 2001.
  • 3Selesnick I W. A Higher Density Discrete Wavelet Transform[J]. IEEE Trans. on Signal Processing, 2006, 54(8): 3039-3048.
  • 4Sendur L, Selesnick I W. Bivariate Shrinkage Functions for Wavelet-based Denoising Exploiting Interscale Dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756.
  • 5Sendur L, Selesnick I W. Bivariate Shrinkage with Local Variance Estimation[J]. IEEE Signal Process Letters, 2002, 9(12): 438-441.
  • 6Yah F, Cheng L, Wang H. Higher Density Dual-tree Discrete Wavelet Transform[J]. lET Signal Process, 2007, 1(3): 164-169.
  • 7李鹏,喻罡,冀晓燕,卞正中.基于双密度双树小波变换的超声图像降噪[J].系统仿真学报,2007,19(24):5797-5801. 被引量:4
  • 8刘红毅,韦志辉.基于小波域最大子节点相关性的图像去噪[J].计算机工程,2009,35(13):214-215. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部