期刊文献+

基于分类器组的轴承故障识别方法研究 被引量:5

Fault recognition method of rolling bearings based on classifier ensembles
下载PDF
导出
摘要 提出一种基于设备运行数据构造分类器组用于滚动轴承故障识别的方法。在决策表上使用属性约简的遗传算法找出构成候选基分类器的较好约简,再使用多样性筛选的遗传算法找出最终的约简,以此为基础结合加权投票策略构建分类器组用于模式分类。通过轴承正常情况、内圈、外圈和滚动体故障的识别实验验证了方法的有效性,得到了较好的实验结果。 A method to construct a data-based classifier ensemble used in fault diagnosis of rolling bearings was presented.The candidate reducts which could be used to build the base classifiers were found by applying a genetic algorithm for feature reduction on a decision table,and then the other genetic algorithm for diversity evaluation was used to search the ensemble of base classifiers.Based on the result above and the weighted voting strategy,the final solution to pattern classification could be set up.It was proved by means of the diagnosis experiments including normal condition,inner race faults,outer race faults and rolling elements faults that the method proposed here is valid and the result obtained is better.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第10期221-224,243,共5页 Journal of Vibration and Shock
基金 国家863重点项目子课题(2006AA04030802) 江苏省自然科学基金(BK2009356) 江苏省高校自然科学研究项目资助(09KJB510003)
关键词 分类器组 约简 多样性 滚动轴承 故障识别 classifier ensemble reduct diversity rolling bearing fault recognition
  • 相关文献

参考文献14

  • 1高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 2梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1996..
  • 3杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15. 被引量:47
  • 4窦东阳,赵英凯.基于优先级诊断树的旋转机械故障诊断专家系统[J].中国电机工程学报,2008,28(32):82-88. 被引量:10
  • 5Tsymbal A, Pechenizkiy M, Cunningham P. Diversity in search strategies for ensemble feature selection [ J ]. Information Fusion, 2005.
  • 6Dietterich T G. Ensemble Methods in Machine Learning, Lecture Notes in Computer Science, Springer, 2000.
  • 7Chandra A, Yao X. Evolving hybrid ensembles of learning machines for better generalisation [ J ]. Neurocomputing, 2006,69:686 - 700.
  • 8Zhou Z H, Jiang Y, Yang Y B, et al. Lung cancer cell identification based on artificial neural network ensembles [ J ]. Artificial Intelligence in Medicine, 2002,24 (1), Jan.
  • 9Zio E, Baraldi P, Gola G. Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery [ J ]. Applied Soft Computing Journal (2007), doi : 10. 1016/j. asoc. 2007,10. 005.
  • 10Brown G, Yao X, Wyatt J, et al. Exploiting Ensemble Diversity For Automatic Feature Extraction [ J ]. Proc. of the 9th International Conference on Neural Information Processing, 2002.

二级参考文献26

共引文献182

同被引文献57

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部