期刊文献+

网格负载均衡策略及其蚁群优化算法 被引量:1

Load balancing strategy and ant optimization algorithm for grids
下载PDF
导出
摘要 以重庆大学CampusGrid建设和加入ChinaGrid的发展规划为背景,研究了多网格环境中出现共用节点(即同时为多个网格系统服务的节点)时资源利用率下降问题,并针对该问题提出了以提高资源利用率为优化目标的负载均衡算法。主要分为问题模型建立、算法设计、以及实验评估3个部分。提出的算法能较好解决该问题,并考虑了网络通信开销对算法执行效果的影响。实验表明,提出的算法能有效防止网格中出现共用节点时资源利用率的下降,并对网格动态变化的特性具有较强的适应能力。 In view of the Campus Grid construction,which is also a crucial part of ChinaGrid project,the performance decline for grid scheduling algorithms when non-dedicated nodes emerge in multi-grid environment is studied. A load balancing algorithm to optimize resource usage rate is proposed. The paper involves three parts:problem modeling,algorithm design,and experiment evaluation. The experimental results show that the proposed algorithm is effective for solving the problem of resource usage rate decline under the discussed grid circumstance.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第10期102-109,共8页 Journal of Chongqing University
基金 国家科技支撑计划基金资助项目(2006BAH02A24-6) 重庆市自然科学基金资助项目(CSTC2008BB2183) 中国博士后科学基金资助项目(20080440699)
关键词 网格 负载均衡 蚁群优化 任务调度 grid computing load balance ant colony optimization task scheduling
  • 相关文献

参考文献15

  • 1FOSTER I, MORGAN K. The grid: blueprint for a new computing infrastructure 2nd edition[M]. USA. Elsevier, 2004.
  • 2YANGC T, HU W J, LAI K C. A resource broker with cross grid information services on computational multi-grid environments[J]. Lecture Notes in Computer Science, 2009.20-31.
  • 3万军洲,李腊元.非专用分布式系统中任务调度的性能预测模型的研究[J].武汉理工大学学报(交通科学与工程版),2004,28(4):575-578. 被引量:1
  • 4李春林,郑辉.网格计算中基于QoS的资源调度优化模型[J].武汉理工大学学报(交通科学与工程版),2008,32(2):199-202. 被引量:4
  • 5LI C L, LI L Y. A system centric scheduling policy for optimizing objectives of application and resource in grid computing[J]. Computers and Industrial Engineering, 2009, 57(10) :1052-1061.
  • 6刘海迪,杨裔,马生峰,李廉.基于分层遗传算法的网格任务调度策略[J].计算机研究与发展,2008,45(z1):35-39. 被引量:12
  • 7ALBERT Y, ZOMAYA, Y T. Observations on using genetic algorithms for dynamic load-balancing [J].IEEE Transactions on Parallel and Distributed Systems, 2001,12(9): 899-911.
  • 8MARCO D, THOMAS S. Ant colony optimization[M]. USA: the MIT Press, 2004:57-72.
  • 9PETER B. Scheduling algorithms ( 5th ed)[M]. Germany: Springer-Verlag, 2007 : 12-29.
  • 10PAVELI F, LUDEK M, HANA R. Model of grid scheduling problem[J]. Grid and Autonomic Computing, 2005(2).. 17-24.

二级参考文献22

  • 1林剑柠,吴慧中.基于遗传算法的网格资源调度算法[J].计算机研究与发展,2004,41(12):2195-2199. 被引量:70
  • 2毕惟红,任红民,吴庆标.一种新的遗传算法最优保存策略[J].浙江大学学报(理学版),2006,33(1):32-35. 被引量:28
  • 3杨博,陈志刚.一种基于双层进化结构的网格任务调度算法[J].计算机工程与应用,2006,42(15):4-6. 被引量:6
  • 4刘晶晶,翟正军.基于改进的遗传算法的任务分配与调度[J].微电子学与计算机,2006,23(6):216-219. 被引量:10
  • 5Arpaci R, Vahdat A,Liu L.The interaction of parallel and sequential workloads on a network of workstations.In: Schwolf T,Pafter D.Proceedings of the second ACM Perfor-mance Conference.Chicago: International Society for high performance computing,1995.172~178
  • 6Anderson T,Culler D,Patterson D.A Case for Networks of Workstations:NOW. IEEE Micro Magzine,1995,23(4):17~21
  • 7都志辉,陈渝,刘鹏.网格计算.北京:清华大学出版社,2002.23-66
  • 8Mutka M,Livny M.The Available Capacity of a Privatedly Owned Machine Environment.Performance Evaluation,1991,12(4):269~284
  • 9Schopf J M.A general architecture for scheduling on the grid. Special Issue of JPDC on Grid Computing, 2002, 6(2):6~11
  • 10Leutenegger S T,Sun X H.Distrubuted computing feasibility in a now-dedicated homogeneous distributed system.In:Perteson K,Swecher P.Proceedings of Supercomputing'93. San Diego:IEEE Society for Supercomputing,1993.143~152

共引文献14

同被引文献14

  • 1王波,王宁生.基于遗传算法与Tabu搜索的拆卸序列优化算法[J].重庆大学学报(自然科学版),2006,29(3):23-27. 被引量:6
  • 2Wang H,Shi Z,Li S. Multicast routing for delayvariation bound using a modified ant colony algorithm[J], Academic Press Ltd,2009,01: 258-272.
  • 3Wang H, Xu H, Yi S W, et al. A tree-growth basedant colony algorithm for QoS multicast routing problem[J ]. Expert Systems with Applications : AnInternational Journal,2011,38 (9) : 11787-11795.
  • 4Wang H? Shi Z,Ge A F, et al. An optimized antcolony algorithm based on the gradual changingorientation factor for multi-constraint QoS routing [J].Computer Communications,2009,32 (4) : 586-593.
  • 5Li X,Yu D T,Qin J. An improved ant colonyalgorithm and simulation [J]. IEEE Press. 2009 :2886-2889.
  • 6Yen Y S,Chao H C,Chang R S, et al. Flooding-limited and multi-constrained QoS multicast routingbased on the genetic algorithm for MANETs [J].Mathematical and Computer Modelling ; AnInternational Journal. 2011,53 (11/12) : 2238-2250.
  • 7Xing H L, Liu X,Jin X, et al. A multi-granularityevolution based quantum genetic algorithm for QoSmulticast routing problem in WDM networks [J〕.Computer Communications,2009 ,32(2) : 386-393.
  • 8Mclay L A, Goldberg D E. Efficient genetic algorithmsusing discretization scheduling [J]. MIT Press, 2005(03): 353 - 385.
  • 9Leela R,Selvakumar S. Genetic algorithm approach todynamic multiconstraint multipath QoS routingalgorithm for IP networks [J]. International Journal ofCommunication Networks and Distributed Systems,2010,5(4): 392-411.
  • 10Zeng X,Tu Z Y. A study on the optimization of theconstrained routing problem based on genetic-ant colonyalgorithm [ J ]. IEEE Computer Society, 2010, 218 :860-863.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部