期刊文献+

面向文本知识管理的自适应中文分词算法 被引量:1

Text knowledge management oriented adaptive Chinese word segmentation algorithms
下载PDF
导出
摘要 针对传统字典匹配分词法在识别新词和特殊词处理方面的不足,结合2元统计模型提出了面向文本知识管理的自适应中文分词算法——SACWSA。SACWSA在预处理阶段结合应用有限状态机理论、基于连词的分隔方法和分治策略对输入文本进行子句划分,从而有效降低了分词算法的复杂度;在分词阶段应用2元统计模型,结合局部概率和全局概率,完成子句的切分,从而有效地提升了新词的识别率并消除了歧义;在后处理阶段,通过建立词性搭配规则来进一步消除2元分词结果的歧义。SACWSA主要的特色在于利用'分而治之'的思想来处理长句和长词,用局部概率与全局概率相结合来识别生词和消歧。通过在不同领域语料库的实验表明,SACWSA能准确、高效地自动适应不同行业领域的文本知识管理要求。 To overcome the shortcomings of new word recognition and special word processing for the traditional dictionary-based matching algorithm in,text knowledge management oriented adaptive Chinese word segmentation algorithm (SACWSA) based on 2-gram statistical model is presented.. At the preprocessing stage,SACWSA applies finite state machine theory,conjunction-based partition method and divide conquer strategy to partition long sentences in input text into sub-sentences,which reduces the algorithm complexity effectively. At the word segmentation stage,2-gram statistical model is employed and combined with partial probability and overall probability to partition the sub-sentences into words,which improved the recognition rate of new words and eliminated ambiguity. At the post-processing stage,the matching rules of part-of-speech are established to eliminate ambiguity of 2-gram word segmentation results further. The innovations of SACWSA include dealing with the long sentences and long terms with the idea of 'Divide and Conquer'; while combining the partial probability and overall probability to identify new words and eliminate ambiguity. Experimental results on text corpus of different fields show that SACWSA can adapt to different text knowledge management requirements in different fields accurately,efficiently and automatically.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第10期110-117,共8页 Journal of Chongqing University
基金 重庆市自然科学基金资助项目(2008BB2183) 中央高校基本科研资助项目(DJIR10180006) '211工程'三期建设资助项目(S-10218) 中国博士后科学基金资助项目(20080440699) 国家科技支撑计划资助项目(2008BAH37B04) 国家社会科学基金'十一五'规划教育学重点课题(ACA07004-08)
关键词 知识管理 文本处理 统计方法 自适应算法 knowtl edeg management text processing statistical methods adaptive algorithms
  • 相关文献

参考文献17

  • 1GAO J F , WU A D, LI M. Adaptive Chinese word segmentation [C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. [ s. l.]:ACL2004, 2004: 462-469.
  • 2ZHANG M Y , LU ZD , ZOUC Y. A Chinese word segmentation based on language situation in processing ambiguous words[J].Information Sciences, 2004, 162 (3-4):275-285.
  • 3WANG X J , QIN Y , I.IU W . A search-based Chinese word segmentation method [C]. Proceedings of the 16th International World Wide Web Conference, 2007 : 1129-1130.
  • 4WANG H M M A Chinese word segmentation based on machine learning[C]// Proceedings of the 1st International Workshop on Education Technology and Computer Science.[S. L.] ETCS 2009, 2009, 2:610-613.
  • 5HONGC M , CHEN C M , CHIU C Y . Automatic extraction of new words based on Google News corpora for supporting lexicon-based Chinese word segmentation systems[J]. Expert Systems with Applications, 2009, 36(2): 3641-3651.
  • 6ZENG D , WEI D H , CHAU M , et al . Chinese word segmentation for terrorism-related contents[J]. Lecture Notes in Computer Science, 2008, 5075:1-13.
  • 7LUO XG , LUO J , XIE Z. The research of chinese automatic word segmentation in hierarchical model dictionary binary tree[C]//Proceedings of 1st International Workshop on Database Technology and Applications. [s.l.]: DBTA 2009, 2009: 321-324.
  • 8冯冲,陈肇雄,黄河燕,关真珍.基于Multigram语言模型的主动学习中文分词[J].中文信息学报,2006,20(1):50-58. 被引量:6
  • 9曹勇刚,曹羽中,金茂忠,刘超.面向信息检索的自适应中文分词系统[J].软件学报,2006,17(3):356-363. 被引量:48
  • 10YANG, C C, LI K W. A heuristic method based on a statistical approach for Chinese text segmentation[J].Journal of the American Society for Information Science and Technology,2005, 56(13): 1438-1447.

二级参考文献15

  • 1孙茂松,邹嘉彦.汉语自动分词研究评述[J].当代语言学,2001,3(1):22-32. 被引量:101
  • 2周强.规则和统计相结合的汉语词类标注方法[J].中文信息学报,1995,9(3):1-10. 被引量:43
  • 3黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:250
  • 4赵海,揭春雨.基于有效子串标注的中文分词[J].中文信息学报,2007,21(5):8-13. 被引量:26
  • 5S Deligne, F Bimbot Language Modeling by Variable Length Sequences: Theoretical Formulation and Evaluation of Multigrams[A]. In: Proceedings IEEE. International Conference on Acoustics, Speech and SignalProcessing(ICASSP)[C], 1995,67- 73.
  • 6A Dempster, N Laird, and D Rubin Maximum-likelihood from Incomplete Data via the EM algorithm[J] .J Royal Statist Soc Ser, B(39),1977,21-29.
  • 7Fuchun Peng, Language Independent Text Learning with Statistical n-Gram Language Models [D]. University of Waterloo, Ontario, Canada, 2003.
  • 8C Manning, H Schutze, Foundations of Statistical Natural Language Processing[M]. MIT Press, Cambridge, Massachusetts, 1999.
  • 9D A Cohn,Z Chahramani, and MI Jordan, 1996, Active Learning with statistical models[J]. Journal of Artificial Intelligence Research, Vol 4,129 - 145.
  • 10L Rabiner ATutorialon Hidden Markov Models and Selected Applications in Speech Recognition[A]. In: Proceedings of IEEE.[C], 77(2), 1989, 172 - 209.

共引文献184

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部