期刊文献+

粗糙集中离散化算法的研究

Research on Discretization Algorithms in Rough Sets
下载PDF
导出
摘要 对目前粗糙集的离散化算法进行了分类讨论,重点分析了基于信息熵的离散化算法的理论基础以及实现步骤,并就该算法对于同一属性在不同样本数据集上的应用情况进行了分析.实验表明,该算法对于部分属性具有数据敏感性,当选择这些属性作为依据时会影响系统的决策能力. Based on classification and discussion of current discretization algorithms,the theoretical basis and accomplishment steps of discretization algorithm using information entropy were analyzed in details,and applications of the algorithm in different sample sets of the same attribute were presented.The experimental results show that the algorithm has sensitivity to some attributes and can affect the decision ability of the system when chosen these attributes.
出处 《上海工程技术大学学报》 CAS 2010年第3期240-244,共5页 Journal of Shanghai University of Engineering Science
基金 上海市教委科研创新资助项目(09YZ370) 上海工程技术大学科研基金项目(校启07-22)
关键词 粗糙集 离散化 信息增益 rough set entropy discretization information gain
  • 相关文献

参考文献7

  • 1PAWLAK Z. Rough set theory and its application to data analysis [J]. Cybernetics and Systems, 1998, 29(7):661 - 688.
  • 2谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 3FAYYAD U, IRANI K. Multi-interval discretization of continuous-valued attributes for classification learning[C] // Proceedings of the 13th International Joint Conference on Artificial Intelligence. San Ma- teo: Morgan Kaufmann Publisher, 1993 : 1022 - 1027.
  • 4KERBER R C. Discretization of numeric attributes [C]//Proceedings of the 10th National Conference on Artificial Intelligence, MIT Press, 1992 : 123 - 128.
  • 5李刚,李霁伦,童兆页.WILD:基于加权信息损耗的离散化算法[J].南京大学学报(自然科学版),2001,37(2):148-153. 被引量:8
  • 6赵曦滨,井然哲,顾明.基于粗糙集的自适应入侵检测算法[J].清华大学学报(自然科学版),2008,48(7):1165-1168. 被引量:17
  • 7STOLFO S J, FAN W, LEE W K, et al. Cost-based modeling and evaluation for data mining with application to fraud and intrusion detection: results from the JAM project[EB/OL]. (1999- 08 - 27)[2010 - 05 - 30]. http: //www. weifan, info/PAPERS/JAM99. PDF.

二级参考文献31

  • 1杨武,云晓春,李建华.一种基于强化规则学习的高效入侵检测方法[J].计算机研究与发展,2006,43(7):1252-1259. 被引量:12
  • 2Bace R. Intrusion Detection[M]. New York: Macmillan Technical Publishing, 2000.
  • 3Forrest S, Perrelason A S, Allen L. Self-nonself discrimination in a computer [C]// Rushby J, Meadows C. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland CA: IEEE Computer Society Press, 1994: 202-212.
  • 4Ghosh A K, Michael C, Schatz M. A real time intrusion system based on learning program behavior [C]// Debar H, Wu S F (eds). Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000: 93- 109.
  • 5Lee W, Stolfo S J. A data mining framework for building intrusion detection model[C]// Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999: 120- 132.
  • 6Pawalk Z. Rough sets [J]. Int J Computer and Information Sci, 1982, 11(5):341-356.
  • 7Ziako W. Rough sets: Trends, challenges, and prospects [C]// Ziako W, Yao Y (eds). Rough Sets and Current Trends in Computing (RSCTC 2000). Banff: Springer-Verlag, 2001: 1-7.
  • 8[1]Catlett J. On Changing Continuous Attributes into Ordered Discrete Attributes. Proceedings of EuropeanWorking Session on Learning (EWSL91). LNAI-482, Berlin: Springer-Verlag, 1991:164~ 178.
  • 9[2]Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous features.Prieditis A. Machine Learning: Proceedings of the 12th International Conference. San Mateo: MorganKaufmann Publishers, 1995: 194~202.
  • 10[3]Fayyad U, Irani K. Multi-interval discretizaton of continuous-valued attributes for classification learning.Proceedings of the 13th International Joint Conference on Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1993:1 022~1 027.

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部