期刊文献+

一维p-Laplace方程Robin问题的正解

Positive Solutions of the Robin Problem for One-Dimensional p-Laplacian Equations
下载PDF
导出
摘要 主要研究如下一维p-Laplace方程Robin问题的正解的存在性:-((u′)p-1)′=f(t,u),u(0)=u′(1)=0,其中p>1,f∈C([0,1]×+,+).在借助于Jensen不等式获得先验估计的基础上,运用不动点指数理论,证明了以上问题1个正解和多重正解存在性的几个结果.最后,把主要结果应用于建立一维p-Laplace方程Dirichlet问题1个对称正解和多重对称正解的存在性. This paper is mainly concerned with the existence and multiplicity of positive solutions to the Robin problem for the one-dimensional p-Laplacian equation{-((u′)p-1)′=f(t,u), u(0)=u′(1)=0,where p 1,f∈C(×R+,R+).Based on a priori estimates achieved by utilizing Jensen's inequality,we use the fixed point index theory to prove our main results of existence and multiplicity of positive solutions to the above problem.Finally,our main results are applied to establish some results of symmetric positive solutions to the Dirichlet problem for one-dimensional p-Laplacian equations.
作者 杨志林
出处 《青岛理工大学学报》 CAS 2010年第5期1-7,共7页 Journal of Qingdao University of Technology
基金 国家自然科学基金资助项目(10871116)
关键词 正解 不动点指数 JENSEN不等式 DIRICHLET问题 对称正解 positive solution fixed point index Jensen's inequality Dirichlet problem symmetric positive solution
  • 相关文献

参考文献32

  • 1Wang J. The Existence of Positive Solutions for the One-Dimensional Laplacian[J]. Proc Amer Math Soc, 1997,125:2275-2283.
  • 2Agarwal R P, Cao D, Lu H, et al. Existence and Multiplicity of Postive Solutions for Singular Semipositone p-Laplacian Equations[J]. Canad J Math,2006,58:449-475.
  • 3Agarwal R P,O'Regan D, Lakshmikantham V. An Upper and Lower Solution Approach for Nonlinear Singular Boundary Value Problems with yt Dependence[J]. Arch Inequal Appl, 2003,1 : 119-135.
  • 4Averna D, Salavati R. Three Solutions for a Mixed Boundary Value Problem Involving the One-Dimensional p-Laplacian[J]. J Math Anal Appl, 2004,298: 245-260.
  • 5Bai Z, Gui Z, Ge W. Multiple Positive Solutions for Some p-Laplaeian Boundary Value Problems[J]. J Math Anal Appl, 2004,300:477- 490.
  • 6Du Z,Xue C,Ge W. Multiple Solutions for Three-Point Boundary-Value Problemwith Nonlinear Terms Depending on the Frst Derivative[J]. Arch Math, 2005,84 : 341-349.
  • 7Feng M,Zhang X,Ge W. Exact Number of Solutions for a Class of Two-Point Boundary Value Problems with One-Dimensional p- Laplacian[J]. J Math Anal Appl, 2008,338 : 784-792.
  • 8Guo Y,Ge W. Upper and Lower Solution Method and a Singular Boundary Value Problem for the One-Dimensional p-Laplaeian[J]. J Math Anal Appl,2000,252:631-648.
  • 9Guo Y, Ge W. Three Positive Solutions for the One-Dimensional p-Laplaeian[J]. J Math Anal Appl, 2003,286:491-508.
  • 10Hung K,Wang S. A Complete Classification of Bifurcation Diagrams of Classes of Multiparameter p-Laplacian Boundary Value Problems[J]. J Differential Equations, 2009,246 : 1568-1599.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部