期刊文献+

正交迭代局部Fisher判别转子故障诊断 被引量:1

Rotor Fault Diagnosis Using Orthogonal Iteration Local Fisher Discriminant
下载PDF
导出
摘要 通过局部加权邻接矩阵重新定义类内散度和类间散度,建立局部Fisher判别函数,在特征值求解过程中以正交迭代方式找出最优投影向量,得到故障诊断模型。该方法能保证数据降维过程中的重构误差最小,并可直接运用故障诊断模型识别增量数据,避免了一般流形学习模式识别时对动态增量数据需要重建模型的问题。转子故障诊断试验表明,对于多传感器振动特征融合信号,相对其他流形学习算法,正交局部Fisher判别(orthogonl locally Fisher discriminant,简称OLFD)的故障诊断效果最好。 A method of fault diagnosis by using orthogonal iterative local fisher discriminant was proposed to better recognize faults of rotor system.Divergences within and between classes were both redefined on base of local weighted adjacency matrix,and local fisher discriminant function was established.Then optimal projection vector was found by iterative orthogonal approach and fault diagnosis model was achieved which can be directly used to recognize patterns of incremental data.The method guarantees minimum reconstruction errors during dimensionality reduction and be free from model reconstruction on the dynamic incremental data in general manifold learning methods.The experimental result shows that the orthogonal local fisher discriminant (OLFD) algorithm is superior to other manifold learning algorithms in rotor fault diagnoses.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2010年第5期500-503,共4页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:50875082)
关键词 正交迭代 流形学习 局部Fisher判别 故障诊断 orthogonal iteration manifold learning local Fisher discriminant fault diagnosis
  • 相关文献

参考文献10

  • 1Seung H S,Daniet D L. The manifold ways of perception[J].Science, 2000,290 (5500) : 2268-2269.
  • 2Roweis S,Saul L. Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290 (5500) : 2323-2326.
  • 3Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003,15 (6): 1373-1396.
  • 4He Xiaofei, Yan Shuichen, Hu Yuxiao, et al. Face recognition using laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (3) : 328-340.
  • 5阳建宏,徐金梧,杨德斌,黎敏.基于主流形识别的非线性时间序列降噪方法及其在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158. 被引量:31
  • 6蒋全胜,贾民平,胡建中,许飞云.基于拉普拉斯特征映射的故障模式识别方法[J].系统仿真学报,2008,20(20):5710-5713. 被引量:34
  • 7胡金海,谢寿生,骆广琦,李应红,杨帆.基于核函数Fisher鉴别分析的特征提取方法[J].振动.测试与诊断,2008,28(4):322-326. 被引量:8
  • 8Sugiyama M. Local Fisher discriminant analysis for aupervised dimensionality reduction[C-1//Proceedings of 23rd International Conference on Machine Learning. Pittsburgh:[s. n. ],2006,905-912.
  • 9Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. Machine Learning Research, 2007,8 (5) : 1027-1061.
  • 10Deng Cai, He Xiaofei, Han Jiawei, et al. Orthogonal laplacian-faces for face recognition[J]. IEEE Transactions of Image Processing, 2006,15 (11 ) .. 3608-3614.

二级参考文献25

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2Guo Yuefei, Shu Tingting, Yang Lingyu, et al. Feature extraction method based on the generalized Fisher Discriminant criterion and face recognition[J]. Pattern Analysis & Application, 2001,4(1) : 61-66.
  • 3Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998,10(5):1 299-1 319.
  • 4Roth V,Steinhage V. Nonlinear discriminant analysis using kernel function[C]//Advances in Neural Information Proceeding Systems 12. MA: MIT Press, 2000:568-574.
  • 5Mika S, Ratsch G, Weston I, et al. Fisher diseriminant analysis with kernels [C] // Proceedings of the 1999 9th IEEE Workshop on Neural Networks for Signal Processing. Madison, WI, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 1999: 41-48.
  • 6Bezdek J C, Pal N R. Some new index of cluster validity[J]. IEEE Trans. SMC, 1998,28(3) : 301-315.
  • 7Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans. Neural Netw. , 2002,13(2) :415-425.
  • 8TAKENS F.Detecting strange attractors in turbulence[R].Lecture Notes in Math.New York:Springer,1981.
  • 9SAUER T,YORKE J A,CASDAGLI M.Embedology[J].Journal of Statistical Physics,1991,65:579-616.
  • 10GRASSBERGER P,HEGGER R,KANTZ H,et al.On noise reduction methods for chaotic data[J].Chaos,1993,3(2):127-141.

共引文献64

同被引文献12

  • 1Wang Xiong, Wang J T L,Lin K I,et al. An indexstructure for data mining and clustering [J] 、Knowl-edge and Information Systems, 2000,12(2) : 161-184.
  • 2Wu Kuoping,Wang Shengde. Choosing the kernelparameters for support vector machines by the inter-cluster distance in the feature space [J]. PatternRecognition, 2009,42:710-717.
  • 3蒋全胜,贾民平,胡建中,等.一种基于流形学习的故障模式识别方法[C] //第九届全国振动理论及应用学术会议论文集.杭州:浙江大学出版社,2007:177-182.
  • 4Sam T R, Lawrence K S. Nonlinear dimensionalityreduction by locally linear embedding [J]. Science,2000,290(22):2323-2326.
  • 5Huang N E,Shen Zheng, Steven R L, et al. The em-pirical mode decomposition and the Hilbert spectrumfor nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A,1998,454:903-995.
  • 6The case western reserve university bearing data cen-ter. Bearing data center fault test data [EB/OL ].[2007-11-27] http : // www. eecs. cwru. edu/Iaborato-ry/bearing/.
  • 7李宏坤,马孝江.基于KPCA-SVM的柴油机状态识别方法的研究[J].振动.测试与诊断,2009,29(1):42-45. 被引量:10
  • 8李敏,杨洁明,张晓平.基于类间可分性度量和SVM的多故障分类算法[J].振动.测试与诊断,2009,29(1):83-85. 被引量:2
  • 9黎敏,徐金梧,阳建宏,杨德斌.一种基于流形拓扑结构的轴承故障分类方法[J].控制工程,2009,16(3):358-362. 被引量:17
  • 10杨洁明,田英.基于EMD和球结构SVM的滚动轴承故障诊断[J].振动.测试与诊断,2009,29(2):155-158. 被引量:14

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部