期刊文献+

信用评估中的鲁棒赋权自适应L_p最小二乘支持向量机方法 被引量:13

A Robust Weighted Adaptive LpLS-SVM Method for Credit Risk Assessment
原文传递
导出
摘要 消费者信用评估是金融风险管理和信用产业竞争的一个重要方面。信用评估数据中常带有噪声点,并且其类别是不均衡的。最小二乘支持向量机是一个被广泛应用的分类模型,其模型简单,求解速度快,但鲁棒性差。本文提出了一个鲁棒赋权自适应Lp最小二乘支持向量机模型,能够适应信用评估样本数据库类别不均衡的特点,可以有效处理信用评估数据中带有噪声点的问题。在仿真数据和三个信用数据库上的实证分析表明,本文所提出的模型具有较好的鲁棒性和分类能力。 Consumer credit risk assessment is an important aspect of financial risk management and credit industry competition.Credit database often contains noisy data,which makes the data uncertain.Least squares support vector machines,a widely used binary classification model,is simple and easy to be applied.In this paper,we propose a robust weighted adaptive Lp least squares support vector machines,which can deal with unbalanced data sets and noisy data.The empirical test on simulation and three credit data sets have shown the model has outstanding robustness and generalization ability.
出处 《中国管理科学》 CSSCI 北大核心 2010年第5期28-33,共6页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70531040 70621001 70921061)
关键词 信用评估 鲁棒 自适应 最小二乘支持向量机 credit risk assessment robust adaptive least squares support vector machines
  • 相关文献

参考文献23

  • 1Baesens, B., Van Gestel, T., et al. Benchmarking state-of-the-art classification algorithms for credit scoring [J]. Journal of the Operational Research Society, 2003, 54(6): 627-635.
  • 2李建平,徐伟宣,刘京礼,石勇.消费者信用评估中支持向量机方法研究[J].系统工程,2004,22(10):35-39. 被引量:22
  • 3Suykens, J. A. K., Vandewalle, J.. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 4Yu, L. A., Wang, S. Y., et al. A modified least squares support vector machine classifier with application to credit risk analysis [J]. International Journal of Information Technology and Deeision Making, 2009, 8 (4): 697-710.
  • 5Li, J. , Chen, Z. , et al. Feature selection via least squares support feature machine [J]. International Journal of Information Technology and Decision Making, 2007, 6(4): 671-686.
  • 6Suykens, J. A. K. , De Brabanter, J, , et al. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, 2002, 48 (1-4):85-105.
  • 7Valyon, J. , Horvath, G.. A weighted generalized LS -SVM [J]. Periodica Polytechnica Serial.. Electrical Engineering, 2003, 47(3-4): 229-251.
  • 8Pedroso, J. P. , Murata, N.. Support vector machines with different norms: Motivation, formulations and results [J]. Pattern Recogniton Lettres, 2001, 22 (12) :1263-1272.
  • 9Liu, Y. F. , Zhang, H. H. , et al. Support vector machines with adaptive L-q penalty [J]. Computational Statistics and Data Analysis, 2007, 51(12): 6380- 6394.
  • 10Sun, D. , Li, J. , et al. Credit risk evaluation: Support vector machines with adaptive Lq penalty [J]. Journal of Southeast Univeristy (English Edition), 2008, 24: 33-36.

二级参考文献23

  • 1VapnikV著 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Eisenbeis R A. Pitfalls in the application discriminant analysis in business and economics[J]. The Journal of Finance, 1977,3(2):875~900.
  • 3Tam K Y,Kiang M. Managerial applications of neural networks:the case of bank failure predictions[M]. Manage- ment Sciences,1992,38(1):926~947.
  • 4Frydman H,Altman E I,Kao D L. Introducing recursive partitioning for financial classification:the case of financial distress[J]. Journal of Finance, 1985, 40 (1): 269~291.
  • 5Burges C J C. A tutorial on support machines for pattern recognition[J]. Knowledge Discovery and Data Mining, 1998, 2(2).
  • 6Roobacert D,Van Hulle M M. View-based 3d object recognition with support vector machines:an application to 3d object recognition with cluttered background[A]. Proc.SVM Workshop at IJCAI'99[C]. Stockholm, Sweden, 1999.
  • 7Scholkopf B, et al. Face pose discrinination using support vector machines[A]. Proceedings of CVPR 2000[C]. Hilton Head Island, 2000:430~437.
  • 8Sola A J, Scholkopf B. A tutorial on support vector regression[Z]. NeuorCOLT TR NC-TR-98-030,Royal Holloway College, University of London,1998.
  • 9Bradley P. Mathematical programming approaches to machine learning and data mining[D]. Madison,WI,USA:Computer Science Department(TR-98-11),University of Wisconsin,1998.
  • 10Suykens J A K,et al. Optimal control by least squares support vector machines[J]. Neural Networks, 2001,14(1): 23~25.

共引文献21

同被引文献209

引证文献13

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部