期刊文献+

基于PCNN和SVM的帘子布疵点识别算法 被引量:2

Algorithm of cord defect detection based on improved PCNN and SVM
下载PDF
导出
摘要 为了使用机器对帘子布疵点进行有效的检测和分类,根据帘子布灰度分布的特点,分析和讨论了改进型PCNN模型,利用改进型PCNN对帘子布疵点特征值进行提取,然后将支持向量机作为分类器最终实现疵点图像的识别.实验结果表明,该方法的疵点识别率较高,在90%以上,是一种简单有效的识别方法. In order to detect and classify the cord defection effectively by use of the machines and according to the re-quirements of the cord fabric defect detection,the improvement of PCNN is analyzed and discussed.An im-proved PCNN is used to extract the eigenvalues of the cord fabric.The SVM is finally used to classify different kinds of the Cord Fabric.The experiment shows that the algorithm has higher rate of recognition rate(more than 90%),which is a simple and effective recognition algorithm.
出处 《天津工业大学学报》 CAS 北大核心 2010年第5期77-80,共4页 Journal of Tiangong University
基金 河南省教育厅自然科学研究计划基金资助项目(2009A510017)
关键词 脉冲耦合神经网络 支持向量机 帘子布 疵点识别 PCNN SVM cord fabric defect recognition
  • 相关文献

参考文献7

二级参考文献15

  • 1郑小霞,钱锋.高斯核支持向量机分类和模型参数选择研究[J].计算机工程与应用,2006,42(1):77-79. 被引量:40
  • 2Vapnik V.An Overview of Statistical Learning Theory[J].IEEE Trans Neural Networks,1999;lO(5):988~999.
  • 3.[EB/OL].http ://ida.first.gmd.de/-raetsch/date/benchmarks.htm.,.
  • 4Pontil M ,Vcrri A.Properties of Support Vector Machines[J].Neural Computation, 1997;(1):955-974.
  • 5Muller K R, Mika S, Rtsch G, et al. An Introduction to Kernel-based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2):181-201.
  • 6Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 7Chapelle,V Vapnik,et al. Choosing Multiple Parameters for Support Vector Machines[J]. Machine Learning, 2002:46:131-159.
  • 8Xueying Zhang, Jing Bai, Wuzhou Liang. The Speech Recognition System Based On Bark Wavelet MFCC[C]. 8th International Conference on Signal Processing, 2006:16-20.
  • 9Debnath R, Takahashi H. A Decision Based On One-Against One Method for Multi-Class Support Vector Machine[J]. Pattern Anal Applie, 2004,7:164-175.
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279

共引文献107

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部